INDEX

A

AC (accepted) status, xxx
add_position function, 161-162, 417
adjacency list, 190, 203
adjacency matrix, 214
algorithm, xxiv. See also binary search; breadth-first search; Dijkstra's algorithm; dynamic programming; randomized algorithm; recursion
Bellman-Ford, 213
constant-time ($O(1)$), 408-409
deterministic, 389
divide and conquer, 394
expected runtime, 400
exponential-time, 86
Floyd-Warshall, 211
greedy, 100, 244, 247
linear-time $(O(n))$, 20, 408
logarithmic-time $(O(\log n)), 242$
memoization, 88-89, 96
$O(n \log n), 299,400-401$
quadratic-time $\left(O\left(n^{2}\right)\right), 10,23,410$
Algorithm Design (Kleinberg and Tardos), 123
Algorithms Illuminated (Part 1): The Basics
(Roughgarden), 275
Algorithms Illuminated (Part 2): Graph Algorithms and Data Structures (Roughgarden), 36, 195
Algorithms Live videos (Fontaine), 329
allocating memory, xxvii
all-pairs shortest-paths, 211
augmenting in data structure, 356
avalanche effect in hash table, 19

B

base case in recursion, 55
base-2 logarithm, 241-242

Bellman-Ford algorithm, 213
big O notation, 407
constant time $(O(1)), 408-409$
exponential time, 86
linear time $(O(n)), 20,408$
logarithmic time $(O(\log n)), 242$
$O(n \log n), 299,400-401$
quadratic time $\left(O\left(n^{2}\right)\right), 10,23,410$
binary search, 240-241, 250-253, 259-260, 272-274
ingredient, easy feasibility, 240-241
ingredient, feasibility split, 241
runtime, 241-242
on sorted array, 242-243, 379-381
binary search tree, property, 301
binary tree, 39, 41. See also tree
building, 43-45
full, 41
left child, 40
node struct, 42
right child, 40
Book Translation problem, 187-195. See also graph
adjacency list in graph, 190
modeling as graph, 189-190
reading line, 188-189
bottom-up solution, 97
breadth-first search (BFS), 159
0-1, 186
runtime, 172-173
time optimization, 168
bucket in hash table, 17
Building Treaps problem, 300-317
binary search tree, property, 301
comparison function for sorting, 305
range maximum query, 307-308
segment tree, 308
height, 309
maximum index, 312-313

Building Treaps problem (continued)
segment tree (continued)
querying, 313-316
runtime, 315
segments of, 311-312
treap, 300-301
Burger Fervor problem, 78-94.
See also dynamic programming memoization, 88-89
optimization problem, 80
solutions
feasible, 80
infeasible, 80
optimal, 80
reconstructing, 414-416
recovering, 414-416
C
C (programming language), xxvi call stack, xxvi
Canadian Computing Competition (CCC), xxix

Canadian Computing Olympiad
(CCO), xxix
Caps and Bottles problem, 390-398.
See also randomized algorithm
divide and conquer (D\&C), 394
expected runtime, 402
in place, 424
randomization, 397-398
subtask, 391
Cave Doors problem, 267-274.
See also binary search
linear search, 272
subtask, 268
chaining in hash table, 19
children in tree, 40
Codeforces judge, xxix
collision in hash table, 18
Compared to What: An Introduction
to the Analysis of Algorithms
(Rawlins), 402
comparison function for sorting, 10-11, $74,254,305$
Competitive Programming 4 (Halim and Halim), 229
complete
in binary tree, 282
in graph, 215
in heap, 282
connected in graph, 171
constant-time algorithm $(O(1)), 408-409$
C Programming: A Modern Approach (King), xxv
Croatian Open Competition in Informatics (COCI), xxix
cycle in graph, 170

D

data structure, xxiv. See also binary tree; graph; hash table; heap; segment tree; union-find choosing, 300
depth-first search (DFS), 195
Descendant Distance problem, 66-76. See also recursion
comparison function for sorting, 74
descendant in tree, 66
linear search, 69
node struct in tree, 68
qsort function for sorting, 74
stremp function, 75
void pointer, 74
descendant in tree, 40, 66
deterministic algorithm, 389
Dijkstra, Edsger W., 203
Dijkstra's algorithm, 203, 210
breadth-first search compared to, 210
in heap, 418
runtime, 210, 420-421
shortest paths, number of, 224
directed in graph, 170
disconnected in graph, 171-172
divide and conquer (D\&C), 394
DMOJ judge, xxix
Drawer Chore problem, 364-372. See also union-find
DWITE contest, xxx
dynamic programming, 92, 95-97
memoization, compared to, 97
optimal substructure, 95
solutions
backward, 134
bottom-up, 97
forward, 134
reconstructing, 414-416
recovering, 414-416
top-down, 97
space optimization, 122
subproblems
adding, 145
"exactly," 95-96, 114, 128, 140
order of, 119, 137
overlapping, 96
parameters, 113-114, 128, 140

E

East Central North America (ECNA) contest, xxix-xxx
edges
in graph, 169
in tree, 40
equivalence relation in union-find, 353
expected runtime, 400
exponential-time algorithm, 86
extracting
from max-heap, 287-289
from min-heap, 294
extract-max, 280
extract-min, 280

F

feasible solution, 80, 237, 246, 259
Feeding Ants problem, 231-240
binary search, 240
feasible solution, 237
find function, 345, 351
find operation in union-find, 341-342
first-in, first-out (FIFO) in queue, 50
Floyd-Warshall algorithm, 211
Fontaine, Matt, 329
Food Lines problem, xxi-xxxiv
input redirection, xxxiv
free function, xxvii
Friends and Enemies problem, 354-364.
See also union-find
full in binary tree, 41
functions
add_position, 161-162, 417
comparison, 10-11, 74, 254, 305
extract_max, 280
extract_min, 280
find, 345, 351
free, xxvii
helper, xxxii-xxxiii, 5, 69, 106
main, xxix, 9,258
malloc, xxvii
oaat, 18-19, 24, 36
qsort, 10-11, 74
rand, 378-379
solve, xxxiii, 85,101
srand, 387
strcmp, 75

G

Grandma Planner problem, 213-228.
See also Dijkstra's algorithm
adjacency matrix in graph, 214
complete graph, 215
modeling as graph, 218-219
shortest paths, number of, 224
state in graph, 217
graph, 169. See also breadth-first search;
Dijkstra's algorithm
adjacency list, 190, 203
adjacency matrix, 214
all-pairs shortest-paths, 211
Bellman-Ford algorithm, 213
complete, 215
connected, 171
cycle, 170
depth-first search, 195
directed, 170
disconnected, 171-172
dynamic programming, compared to, 173
edge, 169
Floyd-Warshall algorithm, 211
modeling, 173, 180-182, 189-190, 199, 218-219, 333
negative-weight edge, 211
node, 169
reversed, 208
shortest paths, 172
number of, 224
single-source shortest-paths, 210
counting edges, 172
state, 182, 217
undirected, 170
weighted, 182, 199
greedy algorithm, 100, 244, 247

H

Halim, Felix, xxviii, 229
Halim, Steven, xxviii, 229
Halloween Haul problem, 37-65.
See also recursion
base case in recursion, 55
binary tree, 39, 41
building, 43-45
full, 41
left child, 40
node struct, 42
right child, 40
first-in, first-out in queue, 50
queue, 50
reading integers from string, 62-63
recursive, 52
call, 54
stack, 47
implementation, 47-49
last-in, first-out, 47
pop, 47
push, 47
top, 47
tree, 40
binary, 41
children, 40
descendant, 40
edge, 40
height, 40
leaf, 40
node, 40
parent, 40
root, 40
siblings, 40
subtrees, 40
vertex, 40
hash table, 17, 20
adding to, 25-26
avalanche effect, 19
bucket, 17
chaining, 19
collision, 18
hashcode, 17
hashed, 17
hash function, 17
incremental hash function, 31
oaat hash function, 18-19, 24
open addressing, 19-20
random hashing, 389
searching, 24-25
size of, 17-18
heap, 298
as array, 291
complete, 282
in Dijkstra's algorithm, 418
height, 290
max-heap, 282-283
extracting from, 287-289
inserting into, 283-287
order, 283
min-heap, 293
extracting from, 294
inserting into, 294
order, 294
runtime, 290
heapsort, 299
height
of heap, 290
of segment tree, 309
in tree, 40
helper function, xxxii-xxxiii, 5, 69, 106
Hockey Rivalry problem, 108-123.
See also dynamic programming
maximization problem, 115
memoization, 118
space optimization in dynamic programming subproblems
"exactly," 114
order of, 119-120
parameters, 113-114

I

identical integers, checking for, 4
include files, xxvii
incremental hash function in hash table, 31
infeasible solution, 80
input of problem description, xxx
input redirection, xxxiv
inserting
into max-heap, 283-287
into min-heap, 294

International Olympiad in Informatics
(IOI), xxix
invariant, 252, 259
inverse Ackermann function in unionfind, 352

J

Jenkins, Bob, 36
judges, xxviii
Codeforces judge, xxix
DMOJ judge, xxix
POJ judge, xxix programming judge, xxviii
SPOJ judge, xxix
UVa judge, xxix
The Jumper problem, 125-137.
See also dynamic programming
memoization, 130
solutions, 134
subproblems
"exactly," 128
order of, 137
parameters, 128

K

King, K. N., xxv
Kleinberg, Jon, 123
Knight Chase problem, 151-169.
See also graph
breadth-first search, 159
parity of an integer, 167
time optimization, 168

L

last-in, first-out (LIFO) in stack, 47
leaf in tree, 40
left child in binary tree, 40
linear search, 27, 69, 272
linear-time algorithm $(O(n))$, 20, 408
linked list
adding to, 15
node struct in, 14
Living Quality problem, 254-267.
See also binary search
feasible solution, 259
invariant, 259
median, calculating, 256
range sum query, 262 one dimension, 262-263
two dimensions, 263-266
logarithm, 241-242
logarithmic-time algorithm $(O(\log n)), 242$
Login Mayhem problem, 20-29. See also hash table
linear search, 27
oaat hash function, 24
longest common prefix, 32 of strings, 33
longest common suffix, 32 of strings, 33-34

M

main function, xxxiii, 9, 258
malloc function, xxvii
max-heap, 282-283
maximization problem, 102
maximum index in segment tree, 312-313
maximum sum of two elements in
segment tree, 319-323
median, calculating, 256
memoization, 88-89, 96.
See also dynamic programming
memory allocation, xxvii
Methods to Solve page (Halim and Halim), xxviii
Mice Maze problem, 198-209.
See also Dijkstra's algorithm
adjacency list in graph, 203
modeling as graph, 199
reversed in graph, 208
weighted in graph, 199
min-heap, 293
minimization problem, 102
modeling as graph, 173, 180-182,
189-190, 199, 218-219, 333
Moneygrubbers problem, 98-108.
See also dynamic programming
greedy algorithm, 100
maximization problem, 102
memoization, 108
minimization problem, 102
optimal substructure, 100
reading integers from line, 106

N

National Olympiad in Informatics in Province (NOIP), xxix
negative-weight edge in graph, 211
node
in graph, 169
in tree, 40
node struct
in binary tree, 42
in linked list, 14

0

$O(1)$ (constant time), 408-409
oaat (one-at-a-time) hash function, 36
in hash table, 18-19, 24
$O\left(n^{2}\right)$ (quadratic time), 10, 23, 410
$O(\log n)(\operatorname{logarithmic}$ time), 242
$O(n)$ (linear time), 20, 408
$O(n \log n), 299,400-401$
open addressing in hash table, 19-20
optimal solution, 80
optimization problem, 80
output of problem description, xxxi

P

parent in tree, 40
parity of an integer, 167
path compression in union-find, 351, 422
pointer, void, 74
POJ judge, xxix
pop in stack, 47
priority queue, 298
probability, 384
multiplication rule, 384
subtracting, 384
problem description
components, $\mathrm{xxx}-\mathrm{xxxi}$
input, xxx
output, xxxi
problem of, xxx
subtask, 268
programming judge, xxviii
push in stack, 47

Q

qsort function for sorting, $10-11,74$
quadratic-time algorithm $\left(O\left(n^{2}\right)\right), 10$, 23, 410
querying the segment tree, 313-316
queue, 50
first-in, first-out, 50
Quicksort, 398-400
pivot, 398

R

rand function, 378-379
random hashing, 389
randomized algorithm, 389
Las Vegas algorithm, 388-389
Monte Carlo algorithm, 387-388
randomization, 377, 397-398
random numbers, 378
range maximum query, 307-308
range sum query, 262
one dimension, 262-263
two dimensions, 263-266
Rawlins, Gregory J.E., 402
reading integers
from line, 106
from string, 62-63
reading lines, 188-189
recursion, 52, 54, 65
base case, 55
recursive call, 54
recursive case, 55
reflexive in union-find, 353
representative in union-find, 340-341
reversed in graph, 208
right child in binary tree, 40
River Jump problem, 243-254.
See also binary search
comparison function for sorting, 254
feasible solution, 246
greedy algorithm, 244, 247
invariant, 252
Roberts, Eric, 76
root in tree, 40

Rope Climb problem, 173-187.
See also graph
$0-1$ breadth-first search, 186
modeling as graph, 180-182
state in graph, 182
weighted in graph, 182
Roughgarden, Tim, 36, 195, 275
runtime
of binary search, 241-242
of breadth-first search, 172-173
of Dijkstra's algorithm, 210, 420-421
of heap, 290
of segment tree, 315
of union-find, 347, 349-350, 352

S

segment tree, 308, 311-312, 317
height of, 309
maximum index, 312-313
maximum sum of two elements, 319-323
querying, 313-316
runtime, 315
updating, 324-325
shortest paths
in graph, 172
number in graph, 224
siblings in tree, 40
single-source shortest-paths
counting edges, 172
in general, 210
Social Network problem, 332-352.
See also union-find
modeling, as graph, 333
solve function, xxxiii, 85, 101
sorting
comparison function, 10-11, 74, 254, 305
heapsort, 299
qsort function, 10-11, 74
Quicksort, 398-400
South African Programming Olympiad (SAPO), xxix

Spelling Check problem, 29-35
incremental hash function, 31
longest common prefix, 32 of strings, 33
longest common suffix, 32 of strings, 33-34
SPOJ judge, xxix
srand function, 387
stack, 47
implementation, 47-49
last-in, first-out, 47
pop, 47
push, 47
top, 47
standard input, xxxi
standard output, xxxi
state in graph, 182, 217
static keyword, xxvi-xxvii, 9
strcmp function, 75
subtask of problem description, 268
subtrees in tree, 40
Supermarket Promotion problem, 277-298. See also heap
complete
in binary tree, 282
in heap, 282
extract-max, 280
extract-min, 280
max-heap, 282-283
as array, 291
extracting from, 287-289
height of, 290
inserting into, 283-287
order, 283
min-heap, 293
extracting from, 294
inserting into, 294
order, 294
runtime of heap, 290
symmetric in union-find, 353

T

Tardos, Éva, 123
ternary operator, 423

The Jumper problem, 125-137.
See also dynamic programming memoization, 130
solutions
backward, 134
forward, 134
subproblems
"exactly," 128
order of in dynamic
programming, 137
parameters, 128
Thinking Recursively with Java
(Roberts), 76
TLE (Time-Limit Exceeded) status, xxx, 410
top-down solution, 97
top in stack, 47
transitive in union-find, 353
treap, 300-301
tree, 40
binary, 41
children, 40
descendant, 40, 66
edge, 40
height, 40
leaf, 40
node, 40
node struct, 68
parent, 40
root, 40
siblings, 40
subtrees, 40
vertex, 40
Two Sum problem, 318-329.
See also segment tree
maximum sum of two elements in segment tree, 319-323
updating the segment tree, 324-325

U

undirected in graph, 170
union-find, 341, 353
augmenting, 356
equivalence relation, 353
find operation, 341-342
inverse Ackermann function, 352
path compression, 351, 422
reflexive, 353
representative, 340-341
runtime, 347, 349-350, 352
symmetric, 353
transitive, 353
union by size, 348, 353, 367
union operation, 340, 343
Unique Snowflakes problem, 1-17.
See also hash table
collisions, 14
comparison function for sorting, 10-11
identical integers, checking for, 4
linked list, adding to, 15
node struct in linked list, 14
qsort function for sorting, 10-11
snowflake code, 12-13
updating the segment tree, 324-325
USA Computing Olympiad (USACO), xxix
UVa judge, xxix

V

vertex in tree, 40
void pointer, 74

W

WA (wrong answer) status, xxx
Ways to Build problem, 137-149.
See also dynamic programming
memoization, 142
subproblems
adding, 145
"exactly," 140
parameters, 140
weighted in graph, 182, 199

Y

Yōkan problem, 376-387. See also randomized algorithm
binary search, 379-381
flavor array, 379
probability, 384-385
rand function, 378-379
randomization, 377
random numbers, 378
srand function, 387

