
INDEX

A
AC (accepted) status, xxx
add_position function, 161–162, 417
adjacency list, 190, 203
adjacency matrix, 214
algorithm, xxiv. See also binary

search; breadth-first search;
Dijkstra’s algorithm; dynamic
programming; randomized
algorithm; recursion

Bellman–Ford, 213
constant-time (O(1)), 408–409
deterministic, 389
divide and conquer, 394
expected runtime, 400
exponential-time, 86
Floyd–Warshall, 211
greedy, 100, 244, 247
linear-time (O(n)), 20, 408
logarithmic-time (O(log n)), 242
memoization, 88–89, 96
O(n log n), 299, 400–401
quadratic-time (O(n2)), 10, 23, 410

Algorithm Design (Kleinberg and
Tardos), 123

Algorithms Illuminated (Part 1): The Basics
(Roughgarden), 275

Algorithms Illuminated (Part 2): Graph
Algorithms and Data Structures
(Roughgarden), 36, 195

Algorithms Live videos (Fontaine), 329
allocating memory, xxvii
all-pairs shortest-paths, 211
augmenting in data structure, 356
avalanche effect in hash table, 19

B
base case in recursion, 55
base-2 logarithm, 241–242

Bellman–Ford algorithm, 213
big O notation, 407

constant time (O(1)), 408–409
exponential time, 86
linear time (O(n)), 20, 408
logarithmic time (O(log n)), 242
O(n log n), 299, 400–401
quadratic time (O(n2)), 10, 23, 410

binary search, 240–241, 250–253,
259–260, 272–274

ingredient, easy feasibility, 240–241
ingredient, feasibility split, 241
runtime, 241–242
on sorted array, 242–243, 379–381

binary search tree, property, 301
binary tree, 39, 41. See also tree

building, 43–45
full, 41
left child, 40
node struct, 42
right child, 40

Book Translation problem, 187–195.
See also graph

adjacency list in graph, 190
modeling as graph, 189–190
reading line, 188–189

bottom-up solution, 97
breadth-first search (BFS), 159

0-1, 186
runtime, 172–173
time optimization, 168

bucket in hash table, 17
Building Treaps problem, 300–317

binary search tree, property, 301
comparison function for

sorting, 305
range maximum query, 307–308
segment tree, 308

height, 309
maximum index, 312–313

432 Index

Building Treaps problem (continued)
segment tree (continued)

querying, 313–316
runtime, 315
segments of, 311–312

treap, 300–301
Burger Fervor problem, 78–94.

See also dynamic programming
memoization, 88–89
optimization problem, 80
solutions

feasible, 80
infeasible, 80
optimal, 80
reconstructing, 414–416
recovering, 414–416

C
C (programming language), xxvi
call stack, xxvi
Canadian Computing Competition

(CCC), xxix
Canadian Computing Olympiad

(CCO), xxix
Caps and Bottles problem, 390–398.

See also randomized algorithm
divide and conquer (D&C), 394
expected runtime, 402
in place, 424
randomization, 397–398
subtask, 391

Cave Doors problem, 267–274.
See also binary search

linear search, 272
subtask, 268

chaining in hash table, 19
children in tree, 40
Codeforces judge, xxix
collision in hash table, 18
Compared to What: An Introduction

to the Analysis of Algorithms
(Rawlins), 402

comparison function for sorting, 10–11,
74, 254, 305

Competitive Programming 4 (Halim and
Halim), 229

complete
in binary tree, 282

in graph, 215
in heap, 282

connected in graph, 171
constant-time algorithm (O(1)), 408–409
C Programming: A Modern Approach

(King), xxv
Croatian Open Competition in

Informatics (COCI), xxix
cycle in graph, 170

D
data structure, xxiv. See also binary

tree; graph; hash table; heap;
segment tree; union-find

choosing, 300
depth-first search (DFS), 195
Descendant Distance problem, 66–76.

See also recursion
comparison function for sorting, 74
descendant in tree, 66
linear search, 69
node struct in tree, 68
qsort function for sorting, 74
strcmp function, 75
void pointer, 74

descendant in tree, 40, 66
deterministic algorithm, 389
Dijkstra, Edsger W., 203
Dijkstra’s algorithm, 203, 210

breadth-first search compared
to, 210

in heap, 418
runtime, 210, 420–421
shortest paths, number of, 224

directed in graph, 170
disconnected in graph, 171–172
divide and conquer (D&C), 394
DMOJ judge, xxix
Drawer Chore problem, 364–372.

See also union-find
DWITE contest, xxx
dynamic programming, 92, 95–97

memoization, compared to, 97
optimal substructure, 95
solutions

backward, 134
bottom-up, 97
forward, 134

Index 433

reconstructing, 414–416
recovering, 414–416
top-down, 97

space optimization, 122
subproblems

adding, 145
“exactly,” 95–96, 114, 128, 140
order of, 119, 137
overlapping, 96
parameters, 113–114, 128, 140

E
East Central North America (ECNA)

contest, xxix–xxx
edges

in graph, 169
in tree, 40

equivalence relation in union-find, 353
expected runtime, 400
exponential-time algorithm, 86
extracting

from max-heap, 287–289
from min-heap, 294

extract-max, 280
extract-min, 280

F
feasible solution, 80, 237, 246, 259
Feeding Ants problem, 231–240

binary search, 240
feasible solution, 237

find function, 345, 351
find operation in union-find, 341–342
first-in, first-out (FIFO) in queue, 50
Floyd–Warshall algorithm, 211
Fontaine, Matt, 329
Food Lines problem, xxi–xxxiv

input redirection, xxxiv
free function, xxvii
Friends and Enemies problem, 354–364.

See also union-find
full in binary tree, 41
functions

add_position, 161–162, 417
comparison, 10–11, 74, 254, 305
extract_max, 280
extract_min, 280
find, 345, 351

free, xxvii
helper, xxxii–xxxiii, 5, 69, 106
main, xxix, 9, 258
malloc, xxvii
oaat, 18–19, 24, 36
qsort, 10–11, 74
rand, 378–379
solve, xxxiii, 85, 101
srand, 387
strcmp, 75

G
Grandma Planner problem, 213–228.

See also Dijkstra’s algorithm
adjacency matrix in graph, 214
complete graph, 215
modeling as graph, 218–219
shortest paths, number of, 224
state in graph, 217

graph, 169. See also breadth-first search;
Dijkstra’s algorithm

adjacency list, 190, 203
adjacency matrix, 214
all-pairs shortest-paths, 211
Bellman–Ford algorithm, 213
complete, 215
connected, 171
cycle, 170
depth-first search, 195
directed, 170
disconnected, 171–172
dynamic programming, compared

to, 173
edge, 169
Floyd–Warshall algorithm, 211
modeling, 173, 180–182, 189–190,

199, 218–219, 333
negative-weight edge, 211
node, 169
reversed, 208
shortest paths, 172

number of, 224
single-source shortest-paths, 210

counting edges, 172
state, 182, 217
undirected, 170
weighted, 182, 199

greedy algorithm, 100, 244, 247

434 Index

H
Halim, Felix, xxviii, 229
Halim, Steven, xxviii, 229
Halloween Haul problem, 37–65.

See also recursion
base case in recursion, 55
binary tree, 39, 41

building, 43–45
full, 41
left child, 40
node struct, 42
right child, 40

first-in, first-out in queue, 50
queue, 50
reading integers from string,

62–63
recursive, 52

call, 54
stack, 47

implementation, 47–49
last-in, first-out, 47
pop, 47
push, 47
top, 47

tree, 40
binary, 41
children, 40
descendant, 40
edge, 40
height, 40
leaf, 40
node, 40
parent, 40
root, 40
siblings, 40
subtrees, 40
vertex, 40

hash table, 17, 20
adding to, 25–26
avalanche effect, 19
bucket, 17
chaining, 19
collision, 18
hashcode, 17
hashed, 17
hash function, 17
incremental hash function, 31

oaat hash function, 18–19, 24
open addressing, 19–20
random hashing, 389
searching, 24–25
size of, 17–18

heap, 298
as array, 291
complete, 282
in Dijkstra’s algorithm, 418
height, 290
max-heap, 282–283

extracting from, 287–289
inserting into, 283–287
order, 283

min-heap, 293
extracting from, 294
inserting into, 294
order, 294

runtime, 290
heapsort, 299
height

of heap, 290
of segment tree, 309
in tree, 40

helper function, xxxii–xxxiii, 5, 69, 106
Hockey Rivalry problem, 108–123.

See also dynamic programming
maximization problem, 115
memoization, 118
space optimization in dynamic

programming
subproblems

“exactly,” 114
order of, 119–120
parameters, 113–114

I
identical integers, checking for, 4
include files, xxvii
incremental hash function in hash

table, 31
infeasible solution, 80
input of problem description, xxx
input redirection, xxxiv
inserting

into max-heap, 283–287
into min-heap, 294

Index 435

International Olympiad in Informatics
(IOI), xxix

invariant, 252, 259
inverse Ackermann function in union-

find, 352

J
Jenkins, Bob, 36
judges, xxviii

Codeforces judge, xxix
DMOJ judge, xxix
POJ judge, xxix
programming judge, xxviii
SPOJ judge, xxix
UVa judge, xxix

The Jumper problem, 125–137.
See also dynamic programming

memoization, 130
solutions, 134
subproblems

“exactly,” 128
order of, 137
parameters, 128

K
King, K. N., xxv
Kleinberg, Jon,123
Knight Chase problem, 151–169.

See also graph
breadth-first search, 159
parity of an integer, 167
time optimization, 168

L
last-in, first-out (LIFO) in stack, 47
leaf in tree, 40
left child in binary tree, 40
linear search, 27, 69, 272
linear-time algorithm (O(n)), 20, 408
linked list

adding to, 15
node struct in, 14

Living Quality problem, 254–267.
See also binary search

feasible solution, 259
invariant, 259
median, calculating, 256

range sum query, 262
one dimension, 262–263
two dimensions, 263–266

logarithm, 241–242
logarithmic-time algorithm

(O(log n)), 242
Login Mayhem problem, 20–29.

See also hash table
linear search, 27
oaat hash function, 24

longest common prefix, 32
of strings, 33

longest common suffix, 32
of strings, 33–34

M
main function, xxxiii, 9, 258
malloc function, xxvii
max-heap, 282–283
maximization problem, 102
maximum index in segment tree, 312–313
maximum sum of two elements in

segment tree, 319–323
median, calculating, 256
memoization, 88–89, 96.

See also dynamic programming
memory allocation, xxvii
Methods to Solve page (Halim and

Halim), xxviii
Mice Maze problem, 198–209.

See also Dijkstra’s algorithm
adjacency list in graph, 203
modeling as graph, 199
reversed in graph, 208
weighted in graph, 199

min-heap, 293
minimization problem, 102
modeling as graph, 173, 180–182,

189–190, 199, 218–219, 333
Moneygrubbers problem, 98–108.

See also dynamic programming
greedy algorithm, 100
maximization problem, 102
memoization, 108
minimization problem, 102
optimal substructure, 100
reading integers from line, 106

436 Index

N
National Olympiad in Informatics in

Province (NOIP), xxix
negative-weight edge in graph, 211
node

in graph, 169
in tree, 40

node struct
in binary tree, 42
in linked list, 14

O
O(1) (constant time), 408–409
oaat (one-at-a-time) hash function, 36

in hash table, 18–19, 24
O(n2) (quadratic time), 10, 23, 410
O(log n) (logarithmic time), 242
O(n) (linear time), 20, 408
O(n log n), 299, 400–401
open addressing in hash table, 19–20
optimal solution, 80
optimization problem, 80
output of problem description, xxxi

P
parent in tree, 40
parity of an integer, 167
path compression in union-find,

351, 422
pointer, void, 74
POJ judge, xxix
pop in stack, 47
priority queue, 298
probability, 384

multiplication rule, 384
subtracting, 384

problem description
components, xxx–xxxi
input, xxx
output, xxxi
problem of, xxx
subtask, 268

programming judge, xxviii
push in stack, 47

Q
qsort function for sorting, 10–11, 74
quadratic-time algorithm (O(n2)), 10,

23, 410
querying the segment tree, 313–316
queue, 50

first-in, first-out, 50
Quicksort, 398–400

pivot, 398

R
rand function, 378–379
random hashing, 389
randomized algorithm, 389

Las Vegas algorithm, 388–389
Monte Carlo algorithm, 387–388
randomization, 377, 397–398
random numbers, 378

range maximum query, 307–308
range sum query, 262

one dimension, 262–263
two dimensions, 263–266

Rawlins, Gregory J.E., 402
reading integers

from line, 106
from string, 62–63

reading lines, 188–189
recursion, 52, 54, 65

base case, 55
recursive call, 54
recursive case, 55

reflexive in union-find, 353
representative in union-find, 340–341
reversed in graph, 208
right child in binary tree, 40
River Jump problem, 243–254.

See also binary search
comparison function for

sorting, 254
feasible solution, 246
greedy algorithm, 244, 247
invariant, 252

Roberts, Eric, 76
root in tree, 40

Index 437

Rope Climb problem, 173–187.
See also graph

0-1 breadth-first search, 186
modeling as graph, 180–182
state in graph, 182
weighted in graph, 182

Roughgarden, Tim, 36, 195, 275
runtime

of binary search, 241–242
of breadth-first search, 172–173
of Dijkstra’s algorithm, 210,

420–421
of heap, 290
of segment tree, 315
of union-find, 347, 349–350, 352

S
segment tree, 308, 311–312, 317

height of, 309
maximum index, 312–313
maximum sum of two elements,

319–323
querying, 313–316
runtime, 315
updating, 324–325

shortest paths
in graph, 172
number in graph, 224

siblings in tree, 40
single-source shortest-paths

counting edges, 172
in general, 210

Social Network problem, 332–352.
See also union-find

modeling, as graph, 333
solve function, xxxiii, 85, 101
sorting

comparison function, 10–11, 74,
254, 305

heapsort, 299
qsort function, 10–11, 74
Quicksort, 398–400

South African Programming Olympiad
(SAPO), xxix

Spelling Check problem, 29–35
incremental hash function, 31
longest common prefix, 32

of strings, 33
longest common suffix, 32

of strings, 33–34
SPOJ judge, xxix
srand function, 387
stack, 47

implementation, 47–49
last-in, first-out, 47
pop, 47
push, 47
top, 47

standard input, xxxi
standard output, xxxi
state in graph, 182, 217
static keyword, xxvi–xxvii, 9
strcmp function, 75
subtask of problem description, 268
subtrees in tree, 40
Supermarket Promotion problem,

277–298. See also heap
complete

in binary tree, 282
in heap, 282

extract-max, 280
extract-min, 280
max-heap, 282–283

as array, 291
extracting from, 287–289
height of, 290
inserting into, 283–287
order, 283

min-heap, 293
extracting from, 294
inserting into, 294
order, 294

runtime of heap, 290
symmetric in union-find, 353

T
Tardos, Éva, 123
ternary operator, 423

438 Index

The Jumper problem, 125–137.
See also dynamic programming

memoization, 130
solutions

backward, 134
forward, 134

subproblems
“exactly,” 128
order of in dynamic

programming, 137
parameters, 128

Thinking Recursively with Java
(Roberts), 76

TLE (Time-Limit Exceeded) status,
xxx, 410

top-down solution, 97
top in stack, 47
transitive in union-find, 353
treap, 300–301
tree, 40

binary, 41
children, 40
descendant, 40, 66
edge, 40
height, 40
leaf, 40
node, 40
node struct, 68
parent, 40
root, 40
siblings, 40
subtrees, 40
vertex, 40

Two Sum problem, 318–329.
See also segment tree

maximum sum of two elements in
segment tree, 319–323

updating the segment tree,
324–325

U
undirected in graph, 170
union-find, 341, 353

augmenting, 356
equivalence relation, 353
find operation, 341–342
inverse Ackermann function, 352
path compression, 351, 422

reflexive, 353
representative, 340–341
runtime, 347, 349–350, 352
symmetric, 353
transitive, 353
union by size, 348, 353, 367
union operation, 340, 343

Unique Snowflakes problem, 1–17.
See also hash table

collisions, 14
comparison function for sorting,

10–11
identical integers, checking for, 4
linked list, adding to, 15
node struct in linked list, 14
qsort function for sorting, 10–11
snowflake code, 12–13

updating the segment tree, 324–325
USA Computing Olympiad

(USACO), xxix
UVa judge, xxix

V
vertex in tree, 40
void pointer, 74

W
WA (wrong answer) status, xxx
Ways to Build problem, 137–149.

See also dynamic programming
memoization, 142
subproblems

adding, 145
“exactly,” 140
parameters, 140

weighted in graph, 182, 199

Y
Yōkan problem, 376–387. See also

randomized algorithm
binary search, 379–381
flavor array, 379
probability, 384–385
rand function, 378–379
randomization, 377
random numbers, 378
srand function, 387

