
8
C O N T R O L L I N G M O T O R S

W I T H M O S F E T S

AVRs cannot directly control motors. In
order to enable this, we need to use exter-

nal components: metal- oxide- semiconductor
field- effect transistors (MOSFETs), transistors that

can switch or amplify voltages in circuits.
In this chapter, you’ll learn how to:

• Use PWM with MOSFETs to control DC motors.

• Use MOSFETs to control larger currents.

• Use motor driver ICs to interface larger motors with your AVR
microcontrollers.

Along the way, you’ll build a temperature- controlled fan and a two-
wheel- drive robot vehicle, building on prior knowledge to complete more
interesting and complex projects. By the end of the chapter, you’ll have the
skills to begin using MOSFETs in your own projects both for fun and for
more serious applications, such as robotics, automation, or toys.

nsp-boxall502581-all.indd 169nsp-boxall502581-all.indd 169 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

170 Chapter 8

The MOSFET
We use MOSFETs when we need to control large currents and voltage using
a small signal, such as that from a microcontroller’s digital output pin.
MOSFETs are available in various sizes, such as those shown in Figure 8-1,
to match different projects’ requirements.

Figure 8- 1: Various MOSFETs

We will be using the small 2N7000 version shown at the bottom left in
Figure 8- 1, which has three leads. When you’re looking at the front of the
2N7000— the flat- faced- side— the pins are, from left to right, the source,
gate, and drain pins (I’ll explain their functions momentarily).

Figure 8-2 shows the schematic symbol for the 2N7000 MOSFET.

Figure 8- 2: Schematic symbol for 2N7000 MOSFET

It’s easy to operate a MOSFET. When you apply a small current to the
gate pin, a large current can flow in through the drain pin and out through
the source pin. You can also connect a PWM signal to the gate pin of a
MOSFET, allowing you to control lights, motors, and more in various ways.
That’s what we’ll focus on in this chapter.

nsp-boxall502581-all.indd 170nsp-boxall502581-all.indd 170 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 171

Our 2N7000 MOSFET can handle up to 60 V DC at 200 mA continu-
ously, or 500 mA in bursts. When choosing a MOSFET for your projects,
be sure to check the voltage and current maximums against the signal you
want to switch.

We connect a 10 kΩ resistor between the MOSFET’s gate and the source
pin every time we use a MOSFET, as you’ll see in the following project. This
acts to keep the gate switched off when a current is not applied to it, in the
same way a resistor pulls down a button, as shown in Chapter 3; it stops the
MOSFET from turning slightly on or off at random.

Project 34: DC Motor Control with PWM and MOSFET
This project demonstrates how to control a small DC motor using PWM
and a MOSFET. As the microcontroller cannot provide enough current for
the motor on its own, we use an external power supply and a MOSFET to
handle the motor’s requirements.

The Hardware
For this project, you’ll need the following hardware:

• USBasp programmer

• Solderless breadboard

• ATmega328P- PU microcontroller

• Jumper wires

• Small DC motor and matching power

• 2N7000 MOSFET

• 10 kΩ resistor

A small DC motor model like the one shown in Figure 8- 3 with a maxi-
mum of 12 V DC will suffice.

Figure 8- 3: Small DC motor

nsp-boxall502581-all.indd 171nsp-boxall502581-all.indd 171 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

172 Chapter 8

You will also need external power, such as a battery pack that holds sev-
eral AA cells. A 6 AA cell pack like the one shown in Figure 8- 4 will provide
up to 9 V DC, enough power to run a 12 V DC motor nicely.

Figure 8- 4: AA battery pack

Assemble the circuit as shown in Figure 8- 5. Note that the black/nega-
tive lead from the battery pack will be connected to GND.

Figure 8- 5: Schematic for Project 34

Don’t disassemble the circuit once you’ve finished using it, as you will
use it as part of the circuit in the following project.

The Code
Open a terminal window, navigate to the Project 34 subfolder of this book’s
Chapter 8 folder, and enter the command make flash. The DC motor should
start from zero, increase speed to a complete on state, then reduce speed
back to a complete off state, then repeat the procedure.

nsp-boxall502581-all.indd 172nsp-boxall502581-all.indd 172 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 173

Let’s see how this works:

// Project 34— DC Motor Control with PWM and MOSFET

#include <avr/io.h>
#include <util/delay.h>

1 #define wait 10
2 void initPWM(void)
{
 // Timers 1A and 1B
 TCCR1A |= (1 << WGM10); // Fast PWM mode
 TCCR1B |= (1 << WGM12); // Fast PWM mode
 TCCR1B |= (1 << CS11);
}

void motorOn(void)
{

 3 TCCR1A &= ~(1 << COM1A1); // Disconnect PWM from PB1
 PORTB |= (1 << PORTB1); // Set PB1 on
}

void motorOff(void)
{
 4 TCCR1A &= ~(1 << COM1A1); // Disconnect PWM from PB1
 PORTB &= ~(1 << PORTB1); // Set PB1 off
}

void motorPWM(uint8_t duty)
{
 5 TCCR1A |= (1 << COM1A1); // Connect PWM to OCR1A— PB1
 OCR1A = duty;
}

int main(void)
{
 DDRB |= (1 << PORTB1); // Set PORTB pin 1 as output
 2 initPWM();
 uint8_t a;

 while(1)
 {
 motorOff(); // Motor off
 _delay_ms(3000);

 for (a = 1; a <255; a++) // Slowly increase motor speed
 {
 motorPWM(a);
 _delay_ms(wait);
 }

 motorOn(); // Motor full on
 _delay_ms(1000);

nsp-boxall502581-all.indd 173nsp-boxall502581-all.indd 173 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

174 Chapter 8

 for (a = 254; a > 0;— a) // Slowly decrease motor speed
 {

motorPWM(a);
_delay_ms(wait);

 }
 }
}

You should be familiar with the code used in this project by now as you
learned about using PWM in Chapter 7, but let’s go through it together.
First, we set the required registers to initialize PWM operation 2. To make
control easier, we use three functions: motorOn(), motorOff(), and motorPWM().
The motorOn() function turns the motor completely on by first disconnecting
PORTB1 from PWM 3 and then setting it to high. This gives 100% power to
the motor via the MOSFET at all times.

We use the motorOff() function to completely turn the motor off by dis-
connecting PORTB1 from PWM 4 and setting it to low. This turns off the
MOSFET gate pin, so the motor has no power. Again, this is necessary as
you can’t send a 0 percent duty cycle to the OCR1A register and expect it
to be off 100 percent of the time. Even with a duty cycle of 0 percent, every
time the hardware timer resets the output is turned on briefly during the
reset.

Finally, the function motorPWM(), which accepts the required duty cycle
value, is used to set the motor speed with PWM. It connects PORTB1 to
PWM 5 and then loads the OCR1A register with the required value.

Our main code repeatedly turns the motor on and increases the speed
to 100 percent, then reduces the speed back to 0, then turns the motor off
for 3 seconds. We turn the motor off at the start of the code, to allow the
end user a moment’s notice before spinning it up. You can change the delay
time in the PWM loops by altering the value of wait 1.

Now that you know how to control a DC motor, let’s apply this skill to a
practical example by building a temperature- controlled fan system.

Project 35: Temperature- Controlled Fan
In this project, you’ll combine your existing knowledge of motor control
with your newfound MOSFET skills, using temperature sensors to make a
temperature- controlled fan.

The Hardware
For this project, you’ll need the following hardware:

• USBasp programmer

• Solderless breadboard

• ATmega328P- PU microcontroller

• Jumper wires

• Small DC motor and matching power

nsp-boxall502581-all.indd 174nsp-boxall502581-all.indd 174 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 175

• 2N7000 MOSFET

• TMP36 temperature sensor

• 0.1 μF ceramic capacitor

• 10 kΩ resistor

You can use the small DC motor from the previous project just to
see how this works, or you can pick up a DC motor– powered cooling fan
from an electrical retailer, such as the unit from PMD Way (part number
59119182) shown in Figure 8- 6. Some fans may have four wires, but only
two of these are required (power and GND). Once again, we’ll need to use
external power for the fan.

Figure 8- 6: DC cooling fan

Assemble the circuit as shown in Figure 8- 7.

Figure 8- 7: Schematic for Project 35

nsp-boxall502581-all.indd 175nsp-boxall502581-all.indd 175 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

176 Chapter 8

As you assemble the project, note that the black/negative lead from the
battery pack or fan power supply will be connected to GND. Also, don’t for-
get to connect AVCC to 5 V.

The Code
Open a terminal window, navigate to the Project 35 subfolder of this book’s
Chapter 8 folder, and enter the command make flash. Once you’ve applied
power, the project should wait three seconds before taking the temperature
and operating the fan, depending on the current temperature.

To see how this works, take a look at the code:

// Project 35— Temperature- Controlled Fan

#include <avr/io.h>
#include <util/delay.h>

void startADC()
{
 ADMUX |= (1 << REFS0); // Use AVcc pin with ADC
 ADMUX |= (1 << MUX2) | (1 << MUX0); // Use ADC5 (pin 28)
 ADCSRA |= (1 << ADPS1) | (1 << ADPS0); // Prescaler for 1 MHz (/8)
 ADCSRA |= (1 << ADEN); // Enable ADC
}

void initPWM(void)
{
 // Timers 1A and 1B
 TCCR1A |= (1 << WGM10); // Fast PWM mode
 TCCR1B |= (1 << WGM12); // Fast PWM mode
 TCCR1B |= (1 << CS11);
}

void motorOff(void)
{
 TCCR1A &= ~(1 << COM1A1); // Disconnect PWM from PB1
 PORTB &= ~(1 << PORTB1); // Set PB1 off
}

void motorOn(void)
{
 TCCR1A &= ~(1 << COM1A1); // Disconnect PWM from PB1
 PORTB |= (1 << PORTB1); // Set PB1 on
}

void motorPWM(uint8_t duty)
{
 TCCR1A |= (1 << COM1A1); // Connect PWM to OCR1A— PB1
 OCR1A = duty;
}

int main(void)
{
 DDRB |= (1 << PORTB1); // Set PORTB pin 1 as output

nsp-boxall502581-all.indd 176nsp-boxall502581-all.indd 176 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 177

 1 startADC();
 initPWM();
 2 uint8_t ADCvalue;
 float voltage;
 float temperature;

 // Delay motor action for a few moments on start
 3 _delay_ms(3000);

 while(1)
 {
 // Get reading from TMP36 via ADC
 4 ADCSRA |= (1 << ADSC); // Start ADC measurement
 while (ADCSRA & (1 << ADSC)); // Wait until conversion complete
 _delay_ms(10);

 // Get value from ADC register, convert to 8- bit value
 ADCvalue = ADC >> 2;

 // Convert reading to temperature value (Celsius)
 voltage = (ADCvalue * (5000 / 256));
 5 temperature = (voltage— 500) / 10;

 // Now you have a temperature value, take action
 6 if (temperature<25)
 {
 // Under 25 degrees, turn motor off
 motorOff();
 }
 7 else if ((temperature>=25) & (temperature <35))
 {
 // At or above 25 and below 35 degrees, set motor to 50% PWM
 motorPWM(127);
 }
 8 else if (temperature>=35)
 {
 // 35 degrees and over, turn motor full on
 motorOn();
 }
 9 _delay_ms(500); // Prevent rapid motor speed changes
 }
}

This code builds upon the ADC and temperature sensor from Project
19 in Chapter 4 and the PWM motor control used in Project 34. First, we
activate the ADC to read the TMP36 temperature sensor and activate PWM
for variable- speed motor control 1 (the startADC() and initPWM() functions
are defined at the beginning of the program). We introduce the variables
required to calculate the temperature for the thermostat 3, and then we
introduce a delay at startup so the motor doesn’t jump into life straight
after a reset or power- up 4.

In the main loop, we take the value from the ADC 4 and convert it
to degrees Celsius 5. The code can now use this temperature value to

nsp-boxall502581-all.indd 177nsp-boxall502581-all.indd 177 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

178 Chapter 8

determine whether to operate the motor. In this project, the motor is
switched off if the temperature is below 25 degrees 6. If the temperature
is between 25 and 34 degrees inclusive, the fan runs at half speed 7. If the
temperature is 35 degrees or over, the fan runs at full speed 8.

Finally, after checking the temperature, there is a short delay 9 to avoid
hysteresis— that is, rapid changes in the characteristics of the circuit. For
example, if the sensor were in the path of a breeze or a fluttering curtain,
the temperature might fluctuate rapidly between 24.99 and 25 degrees,
causing the motor to turn continuously on and off. The delay allows us to
avoid this.

At this point, I hope you’re beginning to see how we can combine basic
AVR code and tools to solve new problems. Building on prior knowledge,
we’ve started to move beyond the simpler projects in earlier chapters to
more complex, practical applications.

Now that we’ve experimented with basic motor control using the
MOSFET, we’ll move on to controlling the direction of rotation as well as
the speed of a DC motor. To do this, we’ll use the L293D motor driver IC.

The L293D Motor Driver IC
To control the speed and direction of one or two small DC motors, we’ll
use the L293D motor driver IC from STMicroelectronics, shown in Figure
8- 8. This is in the same type of package as a microcontroller, and thus we
can easily use it in a solderless breadboard for experimenting.

Figure 8- 8: L293 motor driver IC

You can use small motor driver ICs like the L293D for robotics or small
toys that run from 4.5 to 36 V DC at up to 600 mA, with some restrictions
with regard to heat that I’ll explain later. The L293D saves you a lot of
time, as it takes care of distributing power to the motors and spares you
from building a bunch of external circuitry. It is known as an H- BRIDGE IC
because it has an internal circuit of MOSFETs and other components con-
figured in the shape of the letter H, as shown in Figure 8- 9.

nsp-boxall502581-all.indd 178nsp-boxall502581-all.indd 178 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 179

Figure 8- 9: L293D IC block diagram

Thankfully, we don’t need to build the L293D IC’s circuitry ourselves;
it’s already set up and ready for us to connect the motors, control logic, and
power. Instead, we just connect motors, power, GND, and outputs from a
microcontroller. To see how to wire up the L293D to one DC motor, take a
look at the pinouts in Figure 8- 10.

Figure 8- 10: L293D IC pinouts

There are four GND pins: 4, 5, 12, and 13. Connect those to GND.
Next, locate the two power pins. Connect the first one— VCC1, which
is the logic (or control) power pin— to the 5 V, as you did with your

nsp-boxall502581-all.indd 179nsp-boxall502581-all.indd 179 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

180 Chapter 8

microcontroller in our earlier projects. Then connect the second power pin,
VCC2, to the positive of the motor power supply (up to 36 V DC). Finally,
connect the motor: one wire to pin 3 and the other to pin 6.

Controlling the motor requires three signals from digital outputs
on our microcontroller. First, we set the ENABLE pin: either to high, so
that the driver IC sends power to the motor, or to low, so that the motor
stops. The signals from the next two pins, 1A and 2A, control the polarity
of the power to the motor, and thus the rotational direction. With ENABLE
set high, the motor will rotate in one direction with 1A high and 2A low
and rotate in the other direction with 1A low and 2A high. Table 8– 1 sum-
marizes all this for easy reference.

Table 8- 1: L293D Single Motor Control

ENABLE pin/EN1 (pin 1) 1A pin/out 1 (pin 2) 2A pin/out 2 (pin 7) Motor action

High High Low Forwards

High Low High Backwards

Low High or Low High or Low Stop

There’s no way to tell from the outside whether your motor will run
forwards or backwards; you will need to do a test run to determine which
of the two 1A/2A combinations is which for your motor. You can alter the
speed of the motor by applying a PWM signal to the ENABLE pin.

A F E W WOR DS A BOU T HE AT

The L293D can become warm (or hot) when running toward the higher end of
its capacity. It shouldn’t be used in a solderless breadboard in these situations,
as the four GND pins are also used as a heatsink. This means they might melt
the plastic around the pins, leaving the L293D stuck in the breadboard. If you’re
going to control larger motors, build your circuit using your own PCB, use a
breakout board for the motor control, or solder the circuit onto a stripboard.

Now that you’re familiar with the theory of the L293D, let’s put it into
practice in the next project.

Project 36: DC Motor Control with L293D
This project demonstrates how you can control a small DC motor using
PWM and the L293D motor driver IC, operating the motor in either direc-
tion and at various speeds. This will give you the remaining skills you need
to build your first moving robot vehicle in the next project.

nsp-boxall502581-all.indd 180nsp-boxall502581-all.indd 180 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 181

The Hardware
For this project, you’ll need the following hardware:

• USBasp programmer

• Solderless breadboard

• ATmega328P- PU microcontroller

• Jumper wires

• Small DC motor and matching power

• L293D motor driver IC

Use the same DC motor and matching power supply you used for
Project 34. Assemble the circuit as shown in Figure 8- 11.

Figure 8- 11: Schematic for Project 36

As you assemble the circuit, connect the black/negative lead from the
battery pack or external power to GND once again.

The Code
Open a terminal window, navigate to the Project 36 subfolder of this book’s
Chapter 8 folder, and enter the command make flash. Once you’ve applied
power, the project should wait three seconds before operating the motor at
two different speeds successively, both forwards and backwards.

Let’s see how this works:

nsp-boxall502581-all.indd 181nsp-boxall502581-all.indd 181 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

182 Chapter 8

// Project 36— DC Motor Control with L293D

#include <avr/io.h>
#include <util/delay.h>

1 void initPWM(void)
{
 TCCR2A |= (1 << WGM20); // Fast PWM mode
 TCCR2A |= (1 << WGM21); // Fast PWM mode, part 2
 TCCR2B |= (1 << CS21); // PWM Freq = F_CPU/8/256
}
2 void motorForward(uint8_t duty)
{
 // Set direction
 3 PORTB |= (1 << PORTB1); // PB1 HIGH
 PORTB &= ~(1 << PORTB2); // PB2 LOW

 // Set speed
 4 if (duty == 255)
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 } else if (duty < 255)
 {
 5 TCCR2A |= (1 << COM2A1); // PWM output on OCR2A— PB3
 OCR2A = duty; // Set PORTB3 to PWM value
 }
}

6 void motorBackward(uint8_t duty)
{
 // Set direction
 PORTB &= ~(1 << PORTB1); // PB1 LOW
 PORTB |= (1 << PORTB2); // PB2 HIGH

 // Set speed
 if (duty == 255)
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 } else if (duty < 255)
 {
 TCCR2A |= (1 << COM2A1); // PWM output on OCR2A— PB3
 OCR2A = duty; // Set PORTB3 to PWM value
 }
}

7 void motorOff(void)
{
 // Disconnect PWM output from OCR2A— PB3
 TCCR2A &= ~(1 << COM2A1);
 // Set ENABLE to zero for brake
 PORTB &= ~(1 << PORTB3);
}

int main(void)

nsp-boxall502581-all.indd 182nsp-boxall502581-all.indd 182 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 183

{
 // Set PORTB3, 2, and 1 as outputs
 DDRB |= (1 << PORTB3)|(1 << PORTB2)|(1 << PORTB1);
 8 initPWM();
 _delay_ms(3000); // Wait a moment before starting
 while(1)
 {
 9 motorForward(64);
 _delay_ms(2000);
 motorOff();
 _delay_ms(2000);
 motorForward(255);
 _delay_ms(2000);
 motorOff();
 _delay_ms(2000);
 motorBackward(64);
 _delay_ms(2000);
 motorOff();
 _delay_ms(2000);
 motorBackward(255);
 _delay_ms(2000);
 motorOff();
 _delay_ms(2000);
 }
}

This code builds on that of previous motor control projects in this
chapter, with the required additions for the L293D. We set up PWM at
points 1 and 8. The first of the motor control functions, motorForward() 2,
rotates the motor in one direction and accepts a duty cycle value of between
1 and 255. Per Table 8– 1, we set the outputs as high and low for motor
directional control 3. The code then checks if the required duty cycle value
is 255 4, and if so simply switches the ENABLE pin to high for full- speed
motor running instead of using PWM. However, if it’s less than 255, then
PWM is enabled for the output pin controlling the L293D ENABLE pin 5
and the required duty cycle value is dropped into OCR2A.

The motor control method used in motorForward() is repeated with the
function motorBackward() 6, except with the outputs for motor control set to
low and high for reverse rotation. Finally, the motorOff() function 7 turns off
the motor by first disabling PWM for the output pin controlling the L293D
ENABLE pin and then setting it to low. With all this complete, you can now
use the motor control functions to control the speed and direction of motor
rotation, as demonstrated in the main loop of the code 9.

Now that you know how to control the speed and direction of a DC
motor, let’s use two motors to control a small robot vehicle.

Project 37: Controlling a Two- Wheel- Drive Robot Vehicle
In this project, you’ll learn to control a small two- wheel- drive robot vehicle.
The suggested hardware includes two DC motors and a castor (a small,

nsp-boxall502581-all.indd 183nsp-boxall502581-all.indd 183 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

184 Chapter 8

swiveling wheel fixed to the bottom of your robot vehicle), allowing you to
easily control the speed and direction of travel. I hope this inspires you to
create your own more complex robotic creations!

The Hardware
For this project, you’ll need the following hardware:

• USBasp programmer

• Solderless breadboard

• ATmega328P- PU microcontroller

• Jumper wires

• Two small DC motors and matching power

• 2WD robot vehicle chassis (such as PMD Way part number 72341119)

• Four AA battery cells

• 1N4004 power diode

• L293D motor driver IC

The Chassis

The foundation of any robot vehicle is a solid chassis containing the motors,
drivetrain, and power supply. You can choose from many chassis models
available on the market. To keep things simple, this project relies on an
inexpensive robot chassis with two small DC motors that operate at around
6 V DC and two matching wheels, as shown in Figure 8- 12.

Figure 8- 12: Two- wheel- drive robot
vehicle chassis (PMD Way part number
72341119)

The task of physically assembling the robot chassis varies between mod-
els, but most require a few additional tools beyond those included in the
kit, such as screwdrivers. If you haven’t settled on a final design and wish
to get your robot moving in a temporary configuration, you can attach the
electronics to the chassis with a reusable putty adhesive like Blu- Tack.

nsp-boxall502581-all.indd 184nsp-boxall502581-all.indd 184 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 185

The Power Supply

The motors included with the robot chassis typically operate at around 6
V DC, so we’ll use the 4 AA cell battery holder included with the example
chassis in Figure 8- 12. We can’t use 6 V to power the microcontroller cir-
cuit, so we place a 1N4004 diode between the power supply positive and the
5 V connection on the microcontroller. The diode will cause a 0.7 V drop in
voltage, bringing the microcontroller supply to around 5.3 V DC. The volt-
age will again drop as the battery life decreases.

Assemble the circuit as shown in Figure 8-13.

Figure 8- 13: Schematic for Project 37

Again, the black/negative lead from the battery pack or external power
connects to GND, and the red/positive lead runs to both the L293D VCC2
pin and the 1N4004 diode.

The Code
Open a terminal window, navigate to the Project 37 subfolder of this book’s
Chapter 8 folder, and enter the command make flash. Once you remove
the AVR programmer and the vehicle starts up, it should wait three sec-
onds before moving off forward and then turning left, right, and so on as
directed by the sequence of functions in the main loop of the code.

This code is the culmination of our experiments with DC motor control
using the L293D motor controller IC and PWM. Let’s see how it works:

nsp-boxall502581-all.indd 185nsp-boxall502581-all.indd 185 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

186 Chapter 8

// Project 37— Controlling a Two- Wheel- Drive Robot Vehicle

#include <avr/io.h>
#include <util/delay.h>

void initPWM(void) 1
{
 TCCR2A |= (1 << WGM20); // Fast PWM mode
 TCCR2A |= (1 << WGM21);); // Fast PWM mode, part 2
 TCCR2B |= (1 << CS21);); // PWM Freq = F_CPU/8/256
}

void moveForward(uint8_t duty)
{
 // Set direction
 PORTB |= (1 << PORTB4)|(1 << PORTB1); 2 // PB4,1 HIGH
 PORTB &= ~(1 << PORTB5)&~(1 << PORTB2); // PB5,2 LOW

 // Set speed
 if (duty == 255) 3
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 PORTD |= (1 << PORTD3); // Set PORTD3 to on
 } else if (duty < 255)
 {
 TCCR2A |= (1 << COM2A1); 4 // PWM output on OCR2A— PB3
 TCCR2A |= (1 << COM2B1); // PWM to OCR2B— PD3
 OCR2A = duty; // Set PORTB3 to PWM value
 OCR2B = duty; // Set PORTD3 to PWM value
 }
}

void moveBackward(uint8_t duty)
{
 // Set direction
 PORTB &= ~(1 << PORTB4)&~(1 << PORTB1); // PB4,1 LOW
 PORTB |= (1 << PORTB5)|(1 << PORTB2); // PB5,2 HIGH

 // Set speed
 if (duty == 255)
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 PORTD |= (1 << PORTD3); // Set PORTD3 to on
 } else if (duty < 255)
 {
 TCCR2A |= (1 << COM2A1); // PWM output on OCR2A— PB3
 TCCR2A |= (1 << COM2B1); // PWM to OCR2B— PD3
 OCR2A = duty; // Set PORTB3 to PWM value
 OCR2B = duty; // Set PORTD3 to PWM value
 }
}

void moveLeft(uint8_t duty)
{

nsp-boxall502581-all.indd 186nsp-boxall502581-all.indd 186 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

Controlling Motors with Mosfets 187

 // Set direction
 PORTB |= (1 << PORTB4)|(1 << PORTB2); // PB4,2 HIGH
 PORTB &= ~(1 << PORTB5)&~(1 << PORTB1); // PB5,1 LOW

 // Set speed
 if (duty == 255)
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 PORTD |= (1 << PORTD3); // Set PORTD3 to on
 } else if (duty < 255)
 {
 TCCR2A |= (1 << COM2A1); // PWM output on OCR2A— PB3
 TCCR2A |= (1 << COM2B1); // PWM to OCR2B— PD3
 OCR2A = duty; // Set PORTB3 to PWM value
 OCR2B = duty; // Set PORTD3 to PWM value
 }
}

void moveRight(uint8_t duty)
{
 // Set direction
 PORTB |= (1 << PORTB5)|(1 << PORTB1); // PB5,1 HIGH
 PORTB &= ~(1 << PORTB4)&~(1 << PORTB2); // PB4,2 LOW

 // Set speed
 if (duty == 255)
 {
 PORTB |= (1 << PORTB3); // Set PORTB3 to on
 PORTD |= (1 << PORTD3); // Set PORTD3 to on
 } else if (duty < 255)
 {
 TCCR2A |= (1 << COM2A1); // PWM output on OCR2A— PB3
 TCCR2A |= (1 << COM2B1); // PWM to OCR2B— PD3
 OCR2A = duty; // Set PORTB3 to PWM value
 OCR2B = duty; // Set PORTD3 to PWM value
 }
}

void motorsOff(void) 5
{
TCCR2A &= ~(1 << COM2A1); // Disconnect PWM from OCR2A— PB3
TCCR2A &= ~(1 << COM2B1); // Disconnect PWM from OCR2B— PD3
PORTB &= ~(1 << PORTB3); // Set ENABLE pins to zero for brake
PORTD &= ~(1 << PORTD3);
}

int main(void)
{
 // Set PORTB5, 4, 3, 2, and 1 as outputs
 DDRB |= (1 << PORTB5)|(1 << PORTB4)|(1 << PORTB3)|(1 << PORTB2)|(1 << PORTB1); 6
 DDRD |= (1 << PORTD3); 7 // Set PORTD3 as output
 initPWM(); 8
 _delay_ms(3000); // Wait a moment before starting
 while(1)
 {

nsp-boxall502581-all.indd 187nsp-boxall502581-all.indd 187 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

188 Chapter 8

moveForward(128);
_delay_ms(2000);
moveLeft(128);
_delay_ms(2000);
moveRight(128);
_delay_ms(2000);
motorsOff();
moveBackward(128);
_delay_ms(2000);
}

}

At 1 and 8, the code initiates PWM for two digital outputs so it can
control two motors. After PWM initiation comes moveForward(), the first of
five functions to control the motors. You might need to switch the wires
on each motor if they appear to work opposite to the code. Four of these
functions— moveForward(), moveBackward(), moveLeft(), and moveRight()— are
identical, except in the order of motor rotation. They all accept a value for
the duty cycle to control the speed of the motors. The function motorsOff()
cuts the power off to both motors.

In this case, we set the direction of the motors forward by making
digital outputs high or low, depending on required rotation type 2. Refer
to Table 8– 1 for the requisite output configurations. The motor move-
ment functions check if the user requires full speed (a duty cycle of 100
percent, represented by 255) 3. If so, it simply sets the ENABLE pins of the
L293D to on. However, if you pass a lower value for the duty cycle through
a motor movement function, the program activates the PWM output to
the ENABLE pins 4 and fills the PWM registers OCR2A and B with the
required duty cycle.

The other three movement functions operate similarly, except that the
motor rotations are set up to allow for turning left or right or moving back-
wards. The motorsOff() function stops movement by turning off PWM and
setting both L293D ENABLE pins to low 5. Finally, the program sets the six
required pins to outputs to control the L293D 6.

You can use the functions used in the main loop of the code to change
the direction of movement, the speed via the duty cycles, and the duration
with the delay functions, and stop the motors when required.

We have used a single timer with two PWM outputs for both motors
(OCR2A and OCR2B) so that they share the same PWM generation and
will thus synchronize with each other. If you use two different timers for
two motors that need to operate together, the PWM signals will differ
slightly and the two motors will operate slightly differently from one other.

Now that we have experimented with DC motors, in the next chap-
ter we’ll examine another useful tool of the AVR system: the internal
EEPROM.

nsp-boxall502581-all.indd 188nsp-boxall502581-all.indd 188 5/27/22 9:41 AM5/27/22 9:41 AM

AVR Workshop (Sample Chapter) © 2023 by John Boxall

