
1
W H A T I S R E C U R S I O N ?

Recursion has an intimidating reputation.
It’s considered hard to understand, but

at its core, it depends on only two things:
 function calls and stack data structures.

Most new programmers trace through what a program does by follow-
ing the execution. It’s an easy way to read code: you just put your finger
on the line of code at the top of the program and move down. Sometimes
your finger will loop back; other times, it will jump into a function and later
return. This makes it easy to visualize what a program does and in what
order.

But to understand recursion, you need to become familiar with a less
obvious data structure, called a stack, that controls the program’s flow of
execution. Most programming beginners don’t know about stacks, because
programming tutorials often don’t even mention them when discussing
function calls. Furthermore, the call stack that automatically manages func-
tion calls doesn’t appear anywhere in the source code.

T H E R E C U R S I V E

B O O K O F

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

T H E
R E C U R S I V E

B O O K
O F

R E C U R S I O N

A C E T H E C O D I N G I N T E R V I E W
W I T H

P Y T H O N A N D J A V A S C R I P T

THE RECURSIVE

BOOKOF

RECURSION

ACETHE
CODING

INTERVI
EWWIT

H

PYTHON
ANDJAV

ASCRIP
T

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

2 Chapter 1

It’s hard to understand something when you can’t see it and don’t know
it exists! In this chapter, we’ll pull back the curtain to dispel the overblown
notion that recursion is hard, and you’ll be able to appreciate the elegance
underneath.

The Definition of Recursion
Before we discuss recursion, let’s get the clichéd recursion jokes out of the
way, starting with this: “To understand recursion, you must first understand
recursion.”

During the months I’ve spent writing this book, I can assure you that
this joke gets funnier the more you hear it.

Another joke is that if you search Google for recursion, the results page
asks if you mean recursion. Following the link, as shown in Figure 1-1, takes
you to . . . the search results for recursion.

Figure 1-1: The Google search results for recursion link to the Google search results
for recursion.

Figure 1-2 shows a recursion joke from the webcomic xkcd.

Figure 1-2: I’m So Meta, Even
This Acronym (I.S. M.E.T.A.)

Most jokes about the 2010 science-fiction action movie Inception are
recursion jokes. The film features characters having dreams within dreams
within dreams.

And finally, what computer scientist could forget that monster from
Greek mythology, the recursive centaur? As you can see in Figure 1-3, it is
half horse, half recursive centaur.

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 3

Figure 1-3: The recursive centaur. Image by Joseph Parker.

Based on these jokes, you might conclude that recursion is a sort of meta,
self-referencing, dream-within-a-dream, infinite mirror-into-mirror sort of
thing. Let’s establish a concrete definition: a recursive thing is something
whose definition includes itself. That is, it has a self-referential definition.

The Sierpiński triangle in Figure 1-4 is defined as an equilateral tri-
angle with an upside-down triangle in the middle that forms three new
equilateral triangles, each of which contains a Sierpiński triangle. The defi-
nition of Sierpiński triangles includes Sierpiński triangles.

Figure 1-4: Sierpiński triangles are fractals (recursive shapes) that include Sierpiński
triangles.

In a programming context, a recursive function is a function that calls
itself. Before we explore recursive functions, let’s take a step back and under-
stand how regular functions work. Programmers tend to take function calls
for granted, but even experienced programmers will find it worthwhile to
review functions in the next section.

What Are Functions?
Functions can be described as mini-programs inside your program. They’re a
feature of nearly every programming language. If you need to run identical

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

4 Chapter 1

instructions at three different places in a program, instead of copying and
pasting the source code three times, you can write the code in a function
once and call the function three times. The beneficial result is a shorter and
more readable program. The program is also easier to change: If you need
to fix a bug or add features, you need to change your program in only one
place instead of three.

All programming languages implement four features in their functions:

1. Functions have code that is run when the function is called.

2. Arguments (that is, values) are passed to the function when it’s called.
This is the input to the function, and functions can have zero or more
arguments.

3. Functions return a return value. This is the output of the function,
though some programming languages allow functions to not return
anything or return null values like undefined or None.

4. The program remembers which line of code called the function and
returns to it when the function finishes its execution.

Different programming languages might have additional features, or
different options for how to call functions, but they all have these four gen-
eral elements. You can visually see the first three of these elements because
you write them in the source code, but how does a program keep track of
where the execution should return to when the function returns?

To get a better sense of the problem, create a functionCalls.py program
that has three functions: a(), which calls b(), which calls c():

Python def a():
 print('a() was called.')
 1 b()
 print('a() is returning.')

def b():
 print('b() was called.')
 2 c()
 print('b() is returning.')

def c():
 print('c() was called.')
 print('c() is returning.')

a()

This code is equivalent to the following functionCalls.html program:

JavaScript <script type="text/javascript">
function a() {
 document.write("a() was called.
");
 1 b();
 document.write("a() is returning.
");
}

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 5

function b() {
 document.write("b() was called.
");
 2 c();
 document.write("b() is returning.
");
}

function c() {
 document.write("c() was called.
");
 document.write("c() is returning.
");
}

a();
</script>

When you run this code, the output looks like this:

a() was called.
b() was called.
c() was called.
c() is returning.
b() is returning.
a() is returning.

The output shows the start of functions a(), b(), and c(). Then, when the
functions return, the output appears in reverse order: c(), b(), and then a().
Notice the pattern to the text output: each time a function returns, it remem-
bers which line of code originally called it. When the c() function call ends,
the program returns to the b() function and displays b() is returning.. Then
the b() function call ends, and the program returns to the a() function and
displays a() is returning.. Finally, the program returns to the original a()
function call at the end of the program. In other words, function calls don’t
send the execution of the program on a one-way trip.

But how does the program remember if it was a() 1 or b() 2 that called
c()? This detail is handled by the program implicitly with a call stack. To
understand how call stacks remember where the execution returns at the
end of a function call, we need to first understand what a stack is.

What Are Stacks?
Earlier I mentioned the clichéd wisecrack, “To understand recursion, you
must first understand recursion.” But this is actually wrong: to really under-
stand recursion, you must first understand stacks.

A stack is one of the simplest data structures in computer science. It
stores multiple values like a list does—but unlike lists, it limits you to add-
ing to or removing values from the “top” of the stack only. For lists, the
“top” is the last item, at the right end of the list. Adding values is called
pushing values onto the stack, while removing values is called popping val-
ues off the stack.

Imagine that you’re engaged in a meandering conversation with some-
one. You’re talking about your friend Alice, which then reminds you of a

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

6 Chapter 1

story about your coworker Bob, but for that story to make sense, you first
have to explain something about your cousin Carol. You finish your story
about Carol and go back to talking about Bob, and when you finish your
story about Bob, you go back to talking about Alice. Then you are reminded
about your brother David, so you tell a story about him. Eventually, you get
around to finishing your original story about Alice.

Your conversation follows a stack-like structure, as in Figure 1-5. The
conversation is stack-like because the current topic is always at the top of
the stack.

Alice Alice Alice Alice Alice Alice
Bob Bob Bob David

Carol

Alice

Figure 1-5: Your meandering conversation stack

In our conversation stack, the new topics are added to the top of the
stack and taken off as they are completed. The previous topics are “remem-
bered” underneath the current topic in the stack.

We can use Python lists as stacks if, to amend the list’s contents, we
limit ourselves to the append() and pop() methods to perform pushing and
popping. JavaScript arrays can also be used as stacks through their push()
and pop() methods.

N O T E Python uses the terms list and item, while JavaScript uses the terms array and ele-
ment, but they are respectively identical for our purposes. In this book, I use the terms
list and item for both languages.

For example, consider this cardStack.py program, which pushes and
pops string values of playing cards to the end of a list named cardStack:

Python cardStack = 1 []
2 cardStack.append('5 of diamonds')
print(','.join(cardStack))
cardStack.append('3 of clubs')
print(','.join(cardStack))
cardStack.append('ace of hearts')
print(','.join(cardStack))
3 cardStack.pop()
print(','.join(cardStack))

The following cardStack.html program contains the equivalent code in
JavaScript:

JavaScript <script type="text/javascript">
let cardStack = 1 [];
2 cardStack.push("5 of diamonds");
document.write(cardStack + "
");
cardStack.push("3 of clubs");
document.write(cardStack + "
");

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 7

cardStack.push("ace of hearts");
document.write(cardStack + "
");
3 cardStack.pop()
document.write(cardStack + "
");
</script>

When you run this code, the output looks like this:

5 of diamonds
5 of diamonds,3 of clubs
5 of diamonds,3 of clubs,ace of hearts
5 of diamonds,3 of clubs

The stack starts off as empty 1. Three strings representing cards are
pushed onto the stack 2. Then the stack is popped 3, which removes the
ace of hearts and leaves the three of clubs at the top of the stack again. The
state of the cardStack stack is tracked in Figure 1-6, going from left to right.

Empty

Figure 1-6: The stack starts empty. Cards are then pushed onto and popped off the stack.

You can see only the topmost card in the card stack, or, in our pro-
gram’s stacks, the topmost value. In the simplest stack implementations,
you can’t see how many cards (or values) are in the stack. You can see only
whether the stack is empty or not.

Stacks are a LIFO data structure, which stands for last in, first out, since
the last value pushed onto the stack is the first value popped out of it. This
behavior is similar to your web browser’s Back button. Your browser tab’s
history functions like a stack that contains all the pages you’ve visited in the
order that you visited them. The browser is always displaying the web page
at the “top” of the history’s “stack.” Clicking a link pushes a new web page
onto the history stack, while clicking the Back button pops the top web
page off and reveals the one “underneath.”

What Is the Call Stack?
Programs use stacks too. The program’s call stack, also simply called the
stack, is a stack of frame objects. Frame objects, also simply called frames, con-
tain information about a single function call, including which line of code
called the function, so the execution can move back there when the func-
tion returns.

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

8 Chapter 1

Frame objects are created and pushed onto the stack when a function
is called. When the function returns, that frame object is popped off the
stack. If we call a function that calls a function that calls a function, the call
stack will have three frame objects on the stack. When all of these functions
return, the call stack will have zero frame objects on the stack.

Programmers don’t have to write code dealing with frame objects, since
the programming language handles them automatically. Different pro-
gramming languages have different ways of implementing frame objects,
but in general they contain the following:

• The return address, or the spot in the program where the execution
should move when the function returns

• The arguments passed to the function call

• A set of local variables created during the function call

For example, take a look at the following localVariables.py program,
which has three functions, just as our previous functionCalls.py and function-
Calls.html programs did:

Python def a():
 1 spam = 'Ant'
 2 print('spam is ' + spam)
 3 b()
 print('spam is ' + spam)

def b():
 4 spam = 'Bobcat'
 print('spam is ' + spam)
 5 c()
 print('spam is ' + spam)

def c():
 6 spam = 'Coyote'
 print('spam is ' + spam)

7 a()

This localVariables.html is the equivalent JavaScript program:

JavaScript <script type="text/javascript">
function a() {
 1 let spam = "Ant";
 2 document.write("spam is " + spam + "
");
 3 b();
 document.write("spam is " + spam + "
");
}

function b() {
 4 let spam = "Bobcat";
 document.write("spam is " + spam + "
");
 5 c();
 document.write("spam is " + spam + "
");

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 9

}

function c() {
 6 let spam = "Coyote";
 document.write("spam is " + spam + "
");
}

7 a();
</script>

When you run this code, the output looks like this:

spam is Ant
spam is Bobcat
spam is Coyote
spam is Bobcat
spam is Ant

When the program calls function a() 7, a frame object is created and
placed on the top of the call stack. This frame stores any arguments passed
to a() (in this case, there are none), along with the local variable spam 1
and the place where the execution should go when the a() function returns.

When a() is called, it displays the contents of its local spam variable,
which is Ant 2. When the code in a() calls function b() 3, a new frame
object is created and placed on the call stack above the frame object for
a(). The b() function has its own local spam variable 4, and calls c() 5. A
new frame object for the c() call is created and placed on the call stack,
and it contains c()’s local spam variable 6. As these functions return, the
frame objects pop off the call stack. The program execution knows where
to return to, because that return information is stored in the frame object.
When the execution has returned from all function calls, the call stack is
empty.

Figure 1-7 shows the state of the call stack as each function is called
and returns. Notice that all the local variables have the same name: spam.
I did this to highlight the fact that local variables are always separate vari-
ables with distinct values, even if they have the same name as other local
variables.

Empty

c()

spam =
'Coyote′

b()

spam =
'Bobcat′

a()

spam =
'Ant′

Empty

a()

spam =
'Ant′

b()

spam =
'Bobcat′

Figure 1-7: The state of the call stack as the localVariables program runs

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

10 Chapter 1

As you can see, programming languages can have separate local vari-
ables with the same name (spam) because they are kept in separate frame
objects. When a local variable is used in the source code, the variable with
that name in the topmost frame object is used.

Every running program has a call stack, and multithreaded programs
have one call stack for each thread. But when you look at the source code
for a program, you can’t see the call stack in the code. The call stack isn’t
stored in a variable as other data structures are; it’s automatically handled
in the background.

The fact that the call stack doesn’t exist in source code is the main rea-
son recursion is so confusing to beginners: recursion relies on something
the programmer can’t even see! Revealing how stack data structures and
the call stack work removes much of mystery behind recursion. Functions
and stacks are both simple concepts, and we can use them together to
understand how recursion works.

What Are Recursive Functions and Stack Overflows?
A recursive function is a function that calls itself. This shortest.py program is
the shortest possible example of a recursive function:

Python def shortest():
 shortest()

shortest()

The preceding program is equivalent to this shortest.html program:

JavaScript <script type="text/javascript">
function shortest() {
 shortest();
}

shortest();
</script>

The shortest() function does nothing but call the shortest() function.
When this happens, it calls the shortest() function again, and that will call
shortest(), and so on seemingly forever. It is similar to the mythological idea
that the crust of the Earth rests on the back of a giant space turtle, which
rests on the back of another turtle. Beneath that turtle: another turtle. And
so on, forever.

But this “turtles all the way down” theory doesn’t do a good job of
explaining cosmology, nor recursive functions. Since the call stack uses the
computer’s finite memory, this program cannot continue forever, the way
an infinite loop does. The only thing this program does is crash and display
an error message.

N O T E To view the JavaScript error, you must open the browser developer tools. On most
browsers, this is done by pressing F12 and then selecting the Console tab.

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 11

The Python output of shortest.py looks like this:

Traceback (most recent call last):
 File "shortest.py", line 4, in <module>
 shortest()
 File "shortest.py", line 2, in shortest
 shortest()
 File "shortest.py", line 2, in shortest
 shortest()
 File "shortest.py", line 2, in shortest
 shortest()
 [Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

The JavaScript output of shortest.html looks like this in the Google
Chrome web browser (other browsers will have similar error messages):

Uncaught RangeError: Maximum call stack size exceeded
 at shortest (shortest.html:2)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)
 at shortest (shortest.html:3)

This kind of bug is called a stack overflow. (This is where the popular web-
site https://stackoverflow.com gets its name.) The constant function calls with no
returns grows the call stack until it uses up all of the computer’s memory allo-
cated for the call stack. To prevent this, the Python and JavaScript interpret-
ers crash the program after a certain limit of function calls that don’t return.

This limit is called the maximum recursion depth or maximum call stack size.
For Python, this is set to 1,000 function calls. For JavaScript, the maximum call
stack size depends on the browser running the code but is generally at least
1,000 as well. Think of a stack overflow as happening when the call stack gets
“too high” (that is, consumes too much computer memory), as in Figure 1-8.

STACK TOO HIGH

!

b()

spam
=

'Bobc
at′

c()

spam =
'Coyote′

Figure 1-8: A stack overflow happens when
the call stack becomes too high, with too many
frame objects taking up the computer’s memory.

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

https://stackoverflow.com

12 Chapter 1

Stack overflows don’t damage the computer. The computer just detects
that the limit of function calls without returns has been reached and termi-
nates the program. At worse, you’ll lose any unsaved work the program had.
Stack overflows can be prevented by having something called a base case,
which is explained next.

Base Cases and Recursive Cases
The stack overflow example has a shortest() function that calls shortest()
but never returns. To avoid a crash, there needs to be a case, or set of cir-
cumstances, where the function stops calling itself and instead just returns.
This is called a base case. By contrast, a case where the function recursively
calls itself is called a recursive case.

All recursive functions require at least one base case and at least one
recursive case. If there is no base case, the function never stops making
recursive calls and eventually causes a stack overflow. If there is no recursive
case, the function never calls itself and is an ordinary function, not a recur-
sive one. When you start writing your own recursive functions, a good start-
ing step is to figure out what the base case and recursive case should be.

Take a look at this shortestWithBaseCase.py program, which defines the
shortest recursive function that won’t crash from a stack overflow:

Python def shortestWithBaseCase(makeRecursiveCall):
 print('shortestWithBaseCase(%s) called.' % makeRecursiveCall)
 if not makeRecursiveCall:

BASE CASE
print('Returning from base case.')

 1 return
 else:

RECURSIVE CASE
 2 shortestWithBaseCase(False)

print('Returning from recursive case.')
return

print('Calling shortestWithBaseCase(False):')
3 shortestWithBaseCase(False)
print()
print('Calling shortestWithBaseCase(True):')
4 shortestWithBaseCase(True)

This code is equivalent to the following shortestWithBaseCase.html
program:

JavaScript <script type="text/javascript">
function shortestWithBaseCase(makeRecursiveCall) {
 document.write("shortestWithBaseCase(" + makeRecursiveCall +
 ") called.
");
 if (makeRecursiveCall === false) {

// BASE CASE
document.write("Returning from base case.
");

 1 return;

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 13

 } else {
// RECURSIVE CASE

 2 shortestWithBaseCase(false);
document.write("Returning from recursive case.
");
return;

 }
}

document.write("Calling shortestWithBaseCase(false):
");
3 shortestWithBaseCase(false);
document.write("
");
document.write("Calling shortestWithBaseCase(true):
");
4 shortestWithBaseCase(true);
</script>

When you run this code, the output looks like this:

Calling shortestWithBaseCase(False):
shortestWithBaseCase(False) called.
Returning from base case.

Calling shortestWithBaseCase(True):
shortestWithBaseCase(True) called.
shortestWithBaseCase(False) called.
Returning from base case.
Returning from recursive case.

This function doesn’t do anything useful except provide a short exam-
ple of recursion (and it could be made shorter by removing the text output,
but the text is useful for our explanation). When shortestWithBaseCase(False)
is called 3, the base case is executed and the function merely returns 1.
However, when shortestWithBaseCase(True) is called 4, the recursive case is
executed and shortestWithBaseCase(False) is called 2.

It’s important to note that when shortestWithBaseCase(False) is recursively
called from 2 and then returns, the execution doesn’t immediately move
back to the original function call at 4. The rest of the code in the recursive
case after the recursive call still runs, which is why Returning from recursive
case. appears in the output. Returning from the base case doesn’t immedi-
ately return from all the recursive calls that happened before it. This will be
important to keep in mind in the countDownAndUp() example in the next section.

Code Before and After the Recursive Call
The code in a recursive case can be split into two parts: the code before the
recursive call and the code after the recursive call. (If there are two recur-
sive calls in the recursive case, such as with the Fibonacci sequence example
in Chapter 2, there will be a before, a between, and an after. But let’s keep it
simple for now.)

The important thing to know is that reaching the base case doesn’t nec-
essarily mean reaching the end of the recursive algorithm. It only means
the base case won’t continue to make recursive calls.

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

14 Chapter 1

For example, consider this countDownAndUp.py program whose recur-
sive function counts from any number down to zero, and then back up to
the number:

Python def countDownAndUp(number):
 1 print(number)
 if number == 0:

BASE CASE
 2 print('Reached the base case.')

return
 else:

RECURSIVE CASE
 3 countDownAndUp(number - 1)
 4 print(number, 'returning')

return

5 countDownAndUp(3)

Here is the equivalent countDownAndUp.html program:

JavaScript <script type="text/javascript">
function countDownAndUp(number) {
 1 document.write(number + "
");
 if (number === 0) {

// BASE CASE
 2 document.write("Reached the base case.
");

return;
 } else {

// RECURSIVE CASE
 3 countDownAndUp(number - 1);
 4 document.write(number + " returning
");

return;
 }
}

5 countDownAndUp(3);
</script>

When you run this code, the output looks like this:

3
2
1
0
Reached the base case.
1 returning
2 returning
3 returning

Remember that every time a function is called, a new frame is cre-
ated and pushed onto the call stack. This frame is where all the local vari-
ables and parameters (such as number) are stored. So, there is a separate

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

What is Recursion? 15

number variable for each frame on the call stack. This is another often con-
fusing point about recursion: even though, from the source code, it looks
like there is only one number variable, remember that because it is a local
variable, there is actually a different number variable for each function call.

When countDownAndUp(3) is called 5, a frame is created, and that frame’s
local number variable is set to 3. The function prints the number variable to the
screen 1. As long as number isn’t 0, countDownAndUp() is recursively called with
number - 1 2. When it calls countDownAndUp(2) 3, a new frame is pushed onto
the stack, and that frame’s local number variable is set to 2. Again, the recur-
sive case is reached and calls countDownAndUp(1) 3, which again reaches the
recursive case and calls countDownAndUp(0).

This pattern of making consecutive recursive function calls and then
returning from the recursive function calls is what causes the countdown
of numbers to appear. Once countDownAndUp(0) is called, the base case is
reached 2, and no more recursive calls are made. However, this isn’t the
end of our program! When the base case is reached, the local number vari-
able is 0. But when that base case returns, and the frame is popped off
the call stack, the frame under it has its own local number variable, with the
same 1 value it’s always had. As the execution returns back to the previous
frames in the call stack, the code after the recursive call is executed 4.
This is what causes the count up of numbers to appear. Figure 1-9 shows
the state of the call stack as countDownAndUp() is recursively called and then
returns.

Empty

countDownAndUp()

number = 1

countDownAndUp()

number = 2

countDownAndUp()

number = 3

countDownAndUp()

number = 2

countDownAndUp()

number = 1

countDownAndUp()

number = 0

Empty

countDownAndUp()

number = 3

Figure 1-9: The call stack keeping track of the values in the number local variable for each function call

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

16 Chapter 1

The fact that the code doesn’t stop immediately when the base case is
reached will be important to keep in mind for the factorial calculation in
the next chapter. Remember, any code after the recursive case will still have
to run.

At this point, you might be thinking that the recursive countDownAndUp()
function is overengineered and difficult to follow. Why not, instead, use
an iterative solution to print numbers? An iterative approach, which uses
loops to repeat a task until it’s done, is usually thought of as the opposite of
recursion.

Whenever you find yourself asking, “Wouldn’t using a loop be easier?”
the answer is almost certainly “Yes,” and you should avoid the recursive solu-
tion. Recursion can be tricky for both beginner and experienced program-
mers, and recursive code isn’t automatically “better” or “more elegant” than
iterative code. Readable, easy-to-understand code is more important than
any supposed elegance that recursion provides. However, on some occa-
sions an algorithm cleanly maps to a recursive approach. Algorithms that
involve tree-like data structures and require backtracking are especially
suited for recursion. These ideas are further explored in Chapter 2.

Summary
Recursion often confuses new programmers, but it is built on the simple
idea that a function can call itself. Every time a function call is made, a
new frame object with information related to the call (such as local vari-
ables and a return address for the execution to move to when the function
returns) is added to the call stack. The call stack, being a stack data struc-
ture, can be altered only by having data added to or removed from its “top.”
This is called pushing to and popping from the stack, respectively.

The call stack is handled by the program implicitly, so there is no call
stack variable. Calling a function pushes a frame object to the call stack,
and returning from a function pops a frame object from the call stack.

Recursive functions have recursive cases, those in which a recursive call
is made, and base cases, those where the function simply returns. If there
is no base case or a bug prevents a base case from being run, the execution
causes a stack overflow that crashes the program.

Recursion is a useful technique, but recursion doesn’t automatically
make code “better” or more “elegant.” This idea is explored more in the
next chapter.

Further Reading
You can find other introductions to recursion in my 2018 North Bay Python
conference talk, “Recursion for Beginners: A Beginner’s Guide to Recursion”
at https://youtu.be/AfBqVVKg4GE. The YouTube channel Computerphile also
introduces recursion in its video “What on Earth is Recursion?” at https://
youtu.be/Mv9NEXX1VHc. Finally, V. Anton Spraul talks about recursion in
his book Think Like a Programmer (2012, No Starch Press) and in his video

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

https://youtu.be/AfBqVVKg4GE
https://youtu.be/Mv9NEXX1VHc
https://youtu.be/Mv9NEXX1VHc

What is Recursion? 17

“Recursion (Think Like a Programmer)” at https://youtu.be/oKndim5-G94.
Wikipedia’s article on recursion goes into great detail at https://en.wikipedia
.org/wiki/Recursion.

You can install the ShowCallStack module for Python. This module
adds a showcallstack() function that you can place anywhere in your code
to see the state of the call stack at that particular point in your program.
You can download the module and find instructions for it at https://pypi.org/
project/ShowCallStack.

Practice Questions
Test your comprehension by answering the following questions:

1. In general, what is a recursive thing?

2. In programming, what is a recursive function?

3. What four features do functions have?

4. What is a stack?

5. What are the terms for adding and removing values to the top of a
stack?

6. Say you push the letter J to a stack, then push the letter Q , then pop the
stack, then push the letter K, then pop the stack again. What does the
stack look like?

7. What is pushed and popped onto the call stack?

8. What causes a stack overflow to happen?

9. What is a base case?

 10. What is a recursive case?

 11. How many base cases and recursive cases do recursive functions have?

 12. What happens if a recursive function has zero base cases?

 13. What happens if a recursive function has zero recursive cases?

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

https://youtu.be/oKndim5-G94
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
https://pypi.org/project/ShowCallStack
https://pypi.org/project/ShowCallStack

The Recursive Book of Recursion (Sample Chapter) © 2/28/22 by Al Sweigart

