
VISUAL BASIC
2005 EXPRESS:

NOW PLAYING

by Wallace Wang

San Francisco

VBE_02.book Page iii Wednesday, November 23, 2005 11:56 AM

assistant
final

http://www.amazon.com/gp/product/1593270593/qid=1134694268/
http://search.barnesandnoble.com/booksearch/isbninquiry.asp?ISBN=1593270593&pdf=y
http://www.nostarch.com/vbexpress.htm

A D V A N C E D D A T A S T R U C T U R E S :
Q U E U E S , S T A C K S , A N D

H A S H T A B L E S

To provide greater flexibility in storing information, Visual
Basic includes three data structures called queues, stacks,
and hash tables, which, as with arrays and collections, do
nothing more than store data in a list. However, they offer different ways to
search, store, and remove data, which can make them more useful than arrays
or collections, depending on what you want your program to do.

Using a Queue

Understanding
Queues

A queue always adds data to the end of a list but removes data from the front of
the list. A queue takes its name from the way it stores and removes data, which
mimics the way people wait in line: the first person in line is the first one to leave.
Because of the way a queue adds and removes data, queues are sometimes called
a First In, First Out (FIFO) data structure.

A queue can be useful for creating an inventory program in which you want
to remove the oldest stored item first. If you were to use a different data
structure, such as a collection, to remove an item, old items could be left sitting
idly by or rotting away in your inventory, which would waste your company’s
resources.

VBE_02.book Page 329 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

330 Chapter 24

To create a queue, you need to declare a variable as a queue, like so:

Dim VariableName As New Queue

When you create a queue, it contains no data, so the first step to using a queue is
to stuff it with data. Like a collection, a queue can store different types of data, such as
string, integers, and boolean values.

Adding Data to a Queue with the Enqueue Method
When you add data to a queue, the data is stored at the end of the queue. Each time you
add data to a queue, the queue gets longer and longer. To add data to a queue, use the
Enqueue method, which looks like this:

QueueName.Enqueue (Data)

Checking the Contents of a Queue
As you fill a queue with data, you may lose track of what data is actually stored in it.
To search the queue for specific data, use the Contains method, which returns a True
or False value, like so:

QueueName.Contains (Data)

where QueueName is the name of the queue and Data is the data you want to find in the
queue.

Figure 24-1 shows a queue
in three different stages. The top
stage shows the number 61 being
added to an existing queue already
full of data. The middle stage
shows how the existing queue
has grown by one additional item,
in this case the number 61. The
bottom stage shows that the only
way to remove an item from
a queue is from the front of the
queue, which is the opposite end
from where new data is added.

.

Figure 24-1: A queue stores new data at one end of the
list and removes old data from the other end.

where QueueName is the name of the queue
and Data is the data you want to store in a
queue.

The following code creates a queue
and stores three items in it: a number,
a string, and a boolean True value, as
shown in Figure 24-2:

Dim MyQueue As New Queue
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)

Figure 24-2: The Enqueue method stores data in a
queue, putting the first stored item at the front of the
list and adding new items to the back of the list.

New data gets added to the end of a queue.

17 25 3 10 94 4861

17 25 3 10 94 4861

17 25 3 10 9461 48

Existing data gets pushed out from the front of the queue.

Dim MyQueue As New Queue

MyQueue.Enqueue (29)

MyQueue.Enqueue ("Cat")

MyQueue.Enqueue (True)

29

29

29

Cat

CatTrue

VBE_02.book Page 330 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 331

The following code stores three items in a queue and then searches to determine
whether the queue contains the string "Cat". Because the queue contains "Cat", the
MsgBox command displays True in a message box.

Dim MyQueue As New Queue
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)
MsgBox(MyQueue.Contains("Cat"))

When you search for data in a queue, you must search for the exact data. For
example, if a queue contains the string "Cat" (uppercase C) but you search for the string
cat (lowercase c), the Contains method will return False because "Cat" is not exactly iden-
tical to the string "cat".

If you want to know only the data currently stored at the front of the queue, use the
Peek method, like so:

Dim MyQueue As New Queue
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)
MsgBox(MyQueue.Peek)

In this example, the number 29 is stored at the front of the queue because it was the
first item placed in the queue. Therefore, the Peek method returns the number 29 and
displays that in a message box.

NOTE The Peek method doesn’t remove any data from the queue. It simply returns the value of
the next chunk of data that you can remove from the queue.

Counting the Contents of a Queue
The number of items that a queue can hold may vary as your program stores and removes
data from the queue. To determine the current number of items stored in a queue, use
the Count method, like so:

QueueName.Count

where QueueName is the name of the queue.
The following BASIC code adds three items to a queue, runs the Count method, and

displays the number 3 in a message box after counting three items in the queue:

Dim MyQueue As New Queue
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)
MsgBox(MyQueue.Count)

Removing Data from a Queue
You can remove data only from the front of the queue, which means that the oldest item
you stored in the queue will also be the next item you can remove. To remove an item
from a queue, use the Dequeue method, like so:

QueueName.Dequeue

where QueueName is the name of the queue.

VBE_02.book Page 331 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

332 Chapter 24

When you use the Dequeue method, you physically remove the first item from the
queue, as shown in Figure 24-3.

Figure 24-3: The Dequeue method removes the first item from the
front of the queue, shortening the length of the queue by one item.

The following BASIC code adds three items to a queue, then uses Dequeue to remove
the first item. In this case, the first item is the number 29, so the MsgBox command displays
29 in a message box:

Dim MyQueue As New Queue
Dim MyData As Object
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)
MyData = MyQueue.Dequeue
MsgBox(MyData)

Because a queue stores data as object data types, when you want to retrieve data
from a queue, you must always store it in a variable that represents an object data type.
In the preceding code, the MyData variable represents an object data type.

As an alternative to removing data from a queue one item at a time, you can empty
a queue completely by using the Clear method, like so:

QueueName.Clear()

where QueueName is the name of the queue.
The following code adds three items to a queue, displays the total number of

items (3), empties the queue, and then runs the Count method to count the total num-
ber of items stored in the queue, which is zero:

Dim MyQueue As New Queue
MyQueue.Enqueue (29)
MyQueue.Enqueue ("Cat")
MyQueue.Enqueue (True)
MsgBox(MyQueue.Count)
MyQueue.Clear()
MsgBox(MyQueue.Count)

In this example, the first MsgBox command displays a 3 in a message box. Next, the
Clear method runs and empties the queue before the second MsgBox command displays a 0
in a message box to let you know the queue is really empty.

When you remove data from a queue using the Dequeue method, you can store the
removed data in a variable, but when you empty a queue using the Clear method, you
lose all the emptied data. To save the entire contents of a queue before emptying it,
copy the data to an array first.

You can remove data only from the front of the queue.

17 25 3 10 94 4861

17 25 3 10 9461 48

VBE_02.book Page 332 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 333

Copying Data from a Queue to an Array
As an alternative to removing data from a queue one item at a time using the Dequeue
method, you can copy all the data from a queue and place it in an array. When you copy
data from an array, the contents of your queue is unchanged.

Because a queue can vary in size, you first need to create a queue and a dynamic
array that stores object data types. Then, after filling the queue with data, you can use
the ToArray method to assign the contents of the queue to that array, as follows:

Dim QueueName As New Queue
Dim ArrayName() As Object
QueueName.Enqueue(Data)
ArrayName = QueueName.ToArray()

where QueueName is the name of your queue, ArrayName is the name of the dynamic array
that holds object data types, and Data is the data, such as a number or string, that you
want to store in your queue.

When you copy data from a queue to an array, the first item in the queue is stored
at index 0 of the array, the second item is stored in index 1 of the array, and so on.

The following code stores four items in a queue, copies them into an array, and then
uses a For-Next loop to display each item in the array. Because arrays begin counting at
index position 0, the For-Next loop has to start counting at 0 and stop counting at the
total number of items in the queue minus one, which is 3.

Dim cat As New Queue
Dim MyArray() As Object
Dim J As Integer
cat.Enqueue("Bo")
cat.Enqueue(False)
cat.Enqueue(75.4)
cat.Enqueue("Nuit")
MyArray = cat.ToArray()
For J = 0 To (cat.Count- 1)
 MsgBox(MyArray(J))
Next

An alternative to copying data from a queue to an array is to use the CopyTo method.
Unlike the ToArray method, which always stores the first item of the queue in the first
position (index 0) of an array, the CopyTo method lets you store data from the queue
starting in any index position of the array, like so:

QueueName.CopyTo(ArrayName, Index)

where QueueName is the name of your queue, ArrayName is the name of the dynamic array
that holds object data types, and Index is the index position where you want to start
storing data in the array. If the value of Index is 0, the first item in the queue is stored at
index position 0 of the array, the second item is stored in index position 1 of the array,
and so on.

Before you can copy data from a queue to an array, you must resize your array with
the ReDim keyword, as shown here:

Dim cat As New Queue
Dim MyArray() As Object
Dim I As Integer

VBE_02.book Page 333 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

334 Chapter 24

cat.Enqueue("Bo")
cat.Enqueue(False)
cat.Enqueue(75.4)
cat.Enqueue("Nuit")
ReDim MyArray(6)
cat.CopyTo(MyArray, 2)
For I = 0 To 6
 MsgBox(MyArray(I))
Next

This example resizes the dynamic array (MyArray) to hold seven elements (0 through
6) and then uses the CopyTo method to copy the data from the queue into the array, start-
ing at index position 2, which is the third position in the array. When the For-Next loop
runs, it first displays two blank message boxes (because the initial two elements of MyArray
are empty) and then displays the data copied from the queue.

Using a Stack

Under-
standing

Stacks

A stack is a data structure that mimics a stack of plates stored in a cafeteria. The last item
stored in the stack is also the first item removed from the stack, often known as a Last In,
First Out (LIFO) data structure, as shown in Figure 24-4.

Figure 24-4: A stack pushes new data on top of old data and pops off data to
remove it from the top of the stack.

To create a stack, you need to declare a variable as a stack, like so:

Dim VariableName As New Stack

When you create a stack, it contains no data, so the first step is to push data on to
the top of the stack. To remove data from a stack, you pop it off the top.

Like a queue, a stack can store different types of data, such as string, integers, and
boolean values. Stacks are often used to store data temporarily. For example, calculator
programs use stacks to store different numbers and mathematical operators (plus sign,
division sign, and so on) that the user chooses. Each time the user types a number, the
program stores that number on the stack. When the user types a mathematical operator
such as the plus sign (+), that is also stored on the stack. As soon as the user types another
number, the program pops the mathematical operator off the stack along with the
previously stored number on the stack and calculates a final result.

49

49

49

49

84

84

84

84103

1038

8103

8

Adding new data to a stack
pushes old data further down
the stack.

Popping data off the top of a stack
removes data from that stack.

VBE_02.book Page 334 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 335

Pushing Data
To store data on a stack, use the Push method, like so:

StackName.Push(Data)

where StackName is the name of the stack where you want to add new data and Data is the
data you want to push on top of the stack.

The following code shows how to push three items on to a stack, as shown in
Figure 24-5:

Dim cat As New Stack
cat.Push("Bo")
cat.Push(False)
cat.Push(304)

Figure 24-5: The string Bo is the first item pushed on a stack
and will be the last item that can be removed from the stack.

Checking the Contents of a Stack
Once you’ve stored data on a stack, you can use the Peek method to see the last data
stored on top of the stack. The Peek method doesn’t remove the data from the stack;
it just returns the value of that data.

To use the Peek method, use the following syntax:

StackName.Peek

The following BASIC code pushes two items onto a stack and then runs the MsgBox
command to display data in a message box:

Dim idiots As New Stack
idiots.Push("Pauly")
idiots.Push("Bobby")
MsgBox(idiots.Peek)

This example pushes the string "Pauly" onto the stack and then shoves another
string, "Bobby", right on top of it. When the Peek method runs, it returns the value of
the last item stored on the stack, which is the string "Bobby", then the MsgBox command
displays Bobby in a message box.

The Peek method is handy for letting you check on the value of the last item stored
on top of a stack, but if you want to search for data that may be stored somewhere else
in a stack, you’ll have to use the Contains method, which uses this syntax:

StackName.Contains(Data)

Bo

Bo

Bo

False

False

False

304

304

VBE_02.book Page 335 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

336 Chapter 24

where StackName is the name of the stack that you want to search and Data is the data you
want to find inside the stack.

The Contains method returns a True or False value. If you search and find data exactly
matching any data stored in a stack, the Contains method returns a True value; otherwise,
it returns a False value.

The following code pushes three items onto a stack and then searches for an item:

Dim wmd As New Stack
wmd.Push("Smallpox")
wmd.Push("Uranium")
wmd.Push("Nerve gas")
MsgBox(wmd.Contains("Uranium"))

In this example, the Contains method searches for the string "Uranium" in the stack
named wmd. Because the string "Uranium" is already stored in the stack, the Contains
method returns a True value and the MsgBox command displays True in a message box.

If you search for "uranium" (lowercase u) in a stack but the stack contains only the
string "Uranium", (uppercase U), the Contains method will return a False value because the
strings are not exactly identical.

NOTE The Contains method tells you only whether certain data is stored in a stack; it won’t tell
you where in the stack that data may be stored.

Counting the Contents of a Stack
A stack can grow and shrink as you push data in and pop data off it. To count the number
of items stored in a stack, use the Count method, like so:

StackName.Count

The following code pushes three items onto a stack and then uses the Count method
to count the total number of items in the stack (3).

Dim wmd As New Stack
wmd.Push("Smallpox")
wmd.Push("Uranium")
wmd.Push("Nerve gas")
MsgBox(wmd.Count)

In this example, the Count method returns a value of 3, so the MsgBox command
displays 3 in a message box.

Popping Data from a Stack
To remove data from a stack, use the Pop method, which removes the last item stored
on the stack. If you want to save the contents of the popped data, you need to store the
popped data into a variable declared to hold object data types, such as the following:

Dim VariableName As Object
VariableName = StackName.Pop

The following code pushes three items onto a stack and then uses the Pop method
to remove the last item pushed onto the stack.

VBE_02.book Page 336 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 337

Dim axis As New Stack
axis.Push("North Korea")
axis.Push("Iraq")
axis.Push("IRS")
MsgBox(axis.Pop)

In this example, the Pop method pops off the last item stored, which is IRS, so the
MsgBox command displays IRS in a message box.

To clear out all data stored in a stack (without saving any of it), you can use the
Clear method, like so:

StackName.Clear

The following code pushes three items onto a stack, uses the Count method to
display 3 in a message box, uses the Clear method to remove all data from the stack,
and then uses the Count method again to display 0 in a message box, showing you that
the stack is now empty:

Dim axis As New Stack
axis.Push("North Korea")
axis.Push("Iraq")
axis.Push("IRS")
MsgBox(axis.Count)
axis.Clear
MsgBox(axis.Count)

Copying Data from a Queue to an Array
Popping data off a stack one item at a time can be tedious, so you can also copy the
entire contents of a stack to an array using either the ToArray or CopyTo methods.

To use the ToArray method, you first create a dynamic array that stores object data
types, then you use the ToArray method to assign the contents of the stack to that array,
as follows:

Dim StackName As New Stack
Dim ArrayName() As Object
StackName.Push(Data)
ArrayName = StackName.ToArray()

where StackName is the name of your stack; ArrayName is the name of your dynamic array
that holds object data types; and Data is the data, such as a number or string, that you
want to store in your stack.

When you copy data from a stack to an array, Visual Basic pops the top item off the
stack (the last item stored on the stack) and stores it in the first position of the array
(index position 0). It then pops the next item off the stack and stores it in index posi-
tion 1 of the array, and so on.

The following code stores three items on a stack, copies them into an array, and then
uses a For-Next loop to display each item in the array. Because arrays begin counting at
index position 0, the For-Next loop has to start counting at 0 and stop counting at the
total number of items in the stack minus one, which is 2.

Dim axis As New Stack
Dim MyArray() As Object

VBE_02.book Page 337 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

338 Chapter 24

Dim I As Integer
axis.Push("North Korea")
axis.Push("Iraq")
axis.Push("IRS")
MyArray = axis.ToArray()
For I = 0 To axis.Count - 1
 MsgBox(MyArray(I))
Next

This example runs the MsgBox command three times. The first time the MsgBox
command displays IRS, the second time it displays Iraq, and the third and last time it
displays North Korea in a message box.

Another way to copy data from a stack to an array is to use the CopyTo method.
Unlike the ToArray method, which always stores the first item of the queue in the first
position (index 0) of an array, the CopyTo method lets you store data from the stack
starting with any index position of the array:

StackName.CopyTo(ArrayName, Index)

where StackName is the name of your stack, ArrayName is the name of your dynamic array that
holds object data types, and Index is the index position where you want to start storing data
in the array. If the Index value is 0, the first item popped off the stack is stored at index
position 0 of the array, the second item is stored in index position 1, and so on.

Before you can copy data from a stack to an array, you must resize your array using
the ReDim keyword, as the following code demonstrates:

Dim axis As New Stack
Dim MyArray() As Object
Dim I As Integer
axis.Push("North Korea")
axis.Push("Iraq")
axis.Push("IRS")
ReDim MyArray(5)
axis.CopyTo(MyArray, 1)
For I = 0 To 5
 MsgBox(MyArray(I))
Next

This example resizes the dynamic array (MyArray) to hold six elements (0 through 5)
and then uses the CopyTo method to pop data, one at a time, from the stack into the array,
starting at index position 1, which is the second position in the array. When the For-Next
loop runs, it first displays one blank message box (because the initial element of the
MyArray is empty at index position 0), and then displays the data copied from the stack.

Using a Hash Table

Under-
standing

Hash Tables

A hash table acts like a list that stores data along with a unique key that can identify that
data, as shown in Figure 24-6. The data associated with a key can be as simple as a single
number or string or as complicated as a stack, a structure, or a two-dimensional array.
These keys will help you to identify and find that data later on, no matter where it is in
the hash table.

NOTE Every key stored in a hash table must be unique; you cannot use the same key twice,
or your program won’t work.

VBE_02.book Page 338 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 339

To create a hash table, declare a variable Hashtable, like so:

Dim VariableName As New Hashtable

Hash tables are initially empty, so you need to store data in them. This data can
be any data type, such as a mix of integer and single data types.

Adding Data to a Hash Table
When you add data to a hash table, you need to add the actual data plus the unique key
that you want to associate with that data. Both the key and the data you want to add to the
hash table can be any data type, such as a number or a string.

To add data to a hash table, use the Add method, like so:

HashtableName.Add(Key, Data)

where HashtableName is the name of the hash table where you want to add data, Key is the
unique value used to identify the data you want to add, and Value is the actual data to
add to the hash table.

The following code adds two items to a hash table:

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")

While this example adds two items to a hash table, nothing will appear to happen
because you can’t actually see anything being added to the hash table.

Retrieving Data from a Hash Table
Once you’ve stored keys and data in a hash table, you can use the key to retrieve the
data later. When you retrieve data using a key, you simply copy the data from the hash
table into a variable; you don’t physically remove the data from the hash table itself.

To retrieve data from a hash table, use the Item method, like so:

HashtableName.Item(Key)

Keys act like shortcuts to help you
find data. For example, you could have
a key named CEO and the data asso-
ciated with it could be a structure that
stores the name, address, and phone
number of the company’s current CEO.
To find the CEO’s phone number, you
could look up the key CEO and that
person’s name would pop up. Without
keys, you would have to search for the
specific data you want to find. If you
can search for the correct key, you’ll
always be able to find the CEO’s private
information.

Figure 24-6: A hash table stores data
in a list where each chunk of data is
associated with a unique key.

Keys Data

“VB” “Visual Basic”

666 “Politicians”

“BAK” “Backup”

“RB” 80394

“DLL” “Dynamic Link Library”

2005 “RealBasic”

95 “Buggy OS”

VBE_02.book Page 339 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

340 Chapter 24

where HashtableName is the name of the hash table where you want to retrieve data and
Key is the unique item associated with the data stored in the hash table.

For example, the following code adds two items to a hash table, searches for the
data associated with the y key, and displays that data in a message box:

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
MsgBox(ColdHash.Item("y"))

In this example, the hash table contains two items (Meat and Potatoes) and the Item
method retrieves the data associated with the y key, which happens to be the Meat string.
As a result, the MsgBox command displays the item associated with the y key, Meat, in a
message box.

Copying Values from a Hash Table to an Array
The Item method can retrieve data from a hash table one item at a time. If you want to
retrieve all the data stored in a hash table, you can use the CopyTo method to copy every-
thing out of a hash table and into a one-dimensional array.

To use the CopyTo method, you need to use the index position where you want to
start copying data from the hash table into the array, like so:

HashtableName.CopyTo(ArrayName, Index)

where HashtableName is the name of your hash table, ArrayName is the name of your dynamic
array that holds DictionaryEntry data types, and Index is the index position where you
want to start storing data in the array. (If this value is 0, the first item from the hash table
is stored at index position 0 of the array, the second item is stored in index position 1
of the array, and so on.)

A DictionaryEntry data type stores both a key and its associated value. While a data
type can usually hold only a single item, a DictionaryEntry data type is specially designed
to work with hash tables to hold two items: a key (either a string or a number) and any
associated data (a string, a number, a collection, an array, a queue, and so on).

Before you can copy data from a hash to an array, you must resize your array using
the ReDim keyword, as the following code demonstrates:

Dim ColdHash As New Hashtable
Dim BreakfastArray() As DictionaryEntry
Dim stuff As DictionaryEntry
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
ReDim BreakfastArray(ColdHash.Count - 1)
ColdHash.CopyTo(BreakfastArray, 0)
For Each stuff In BreakfastArray
MsgBox(stuff.Key & " " & stuff.Value)
Next

This example creates a dynamic array that can hold DictionaryEntry data types and
a variable that can also hold DictionaryEntry data types. After adding the string Potatoes
to the hash table and the string Meat after that, the program next resizes the BreakfastArray
variable to hold the number of items in the hash table minus one.

VBE_02.book Page 340 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 341

NOTE Remember that the first array element is at index 0. Because the total number of items
stored in the hash table is 2, the program resizes the array that consists of two elements, one at
index position 0 and a second at index position 1, which is the value of 2, the total number of
items in the hash table minus 1.

The CopyTo method copies all the data out of the hash table and stores it in the
BreakfastArray, starting at index position 0, the first position of the array. Next, the For
Each loop starts at the beginning of the hash table and displays its contents, which
includes both the key and the data.

The For Each loop starts at the beginning of the array and displays each key/data
pair in a message box. The first message box displays y Meat and the second message
box displays 1 Potatoes.

Counting Data in a Hash Table
Because a hash table can grow and shrink depending on the amount of data stored in it
at any given time, use the Count method to count the number of items currently stored
in a hash table, with this syntax:

HashtableName.Count

where HashtableName is the name of the hash table that contains the data you want to
count.

The following code adds two items to a hash table and then uses the Count method
to count the number of items stored in the hash table:

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
MsgBox(ColdHash.Count)

After adding two items to the hash table, the Count method returns a value of 2, which
the MsgBox command displays in a message box.

Checking Whether Keys or Data Are Stored in a Hash Table
Once you’ve added data to a hash table, you can check to see whether the hash table
contains a certain key or chunk of data, using the ContainsKey or ContainsValue methods.
Both methods return a True or False value.

The ContainsKey method works like this:

HashtableName.ContainsKey(Key)

where HashtableName is the name of the hash table that contains the data you want to
count and Key is the key you want to look for in the hash table.

The ContainsValue method works like this:

HashtableName.ContainsValue(Value)

where HashtableName is the name of the hash table that contains the data you want to
count and Value is the data you want to look for in the hash table.

NOTE Neither the ContainsKey nor ContainsValue method alters or removes the data from the
hash table.

VBE_02.book Page 341 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

342 Chapter 24

The following code adds two items to a hash table and then uses the ContainsKey and
ContainsValue methods to determine whether the hash table contains a specific key or
value:

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
MsgBox(ColdHash.ContainsKey(1))
MsgBox(ColdHash.ContainsValue("MSG"))

In this example, the first MsgBox command displays a True value because the
ContainsKey method finds the key 1 in the hash table. However, the second MsgBox
command displays a False value because the ContainsValue method searches for MSG
stored in the hash table. Because MSG isn’t stored in the hash table, the ContainsValue
method returns a False value.

Removing Data from a Hash Table
Just as you can add data to a hash table, you can also remove data, either by removing
items one at a time or by clearing out the entire hash table all at once. To wipe out all
the data in a hash table, use the Clear method:

HashtableName.Clear()

where HashtableName is the name of the hash table that contains the data you want to
count.

The following code adds two items to a hash table and then uses the Count method to
count all items in the hash table and display the total in a message box using the MsgBox
command. The first MsgBox command displays 2. Then the Clear method runs and empties
the hash table before the second MsgBox command runs and displays 0.

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
MsgBox(ColdHash.Count)
ColdHash.Clear()
MsgBox(ColdHash.Count)

Rather than clear out an entire hash table, you can use the Remove method to
selectively remove individual items from a hash table by deleting the data associated
with a specific key, like so:

HashtableName.Remove(Key)

where HashtableName is the name of the hash table that contains the data you want to
count and Key is the key associated with the data you want to remove.

The following code adds two items to a hash table and then removes the data associ-
ated with the y key:

Dim ColdHash as New Hashtable
ColdHash.Add(1, "Potatoes")
ColdHash.Add("y", "Meat")
MsgBox(ColdHash.Count)

VBE_02.book Page 342 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

Advanced Data St ruc tures: Queues, S tacks, and Hash Tables 343

ColdHash.Remove("y")
MsgBox(ColdHash.Count)

This example uses the Count method to display the number of items in the hash
table (in this case, 2), then it removes the data associated with the y key, which happens
to be the "Meat" string. Next, the Count method counts the total number of items in the
hash table and displays that in a message box, which is now 1.

This tutorial stores identical data in a queue, stack, and hash table so you can see how
different data structures store identical information.

1. Start a new project, then click OK to display a blank form.
2. Choose View Toolbox to display the Toolbox.
3. Click the Button control in the Toolbox, mouse over the form, and click the left

mouse button to create a button on the form.
4. Double-click the Button1 control on the form. The Code window appears.
5. Type the following between the Private Sub and End Sub lines so the Button1_Click

event procedure in the Code window looks like this:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)_
Handles Button1.Click
 Dim MyQueue As New Queue
 Dim MyStack As New Stack
 Dim MyHashTable As New Hashtable
 Const Data1 As Integer = 29
 Const Data2 As String = "Joe Smith"
 Const Data3 As Single = 39.05
 MyQueue.Enqueue(Data1)
 MyQueue.Enqueue(Data2)
 MyQueue.Enqueue(Data3)

 MyStack.Push(Data1)
 MyStack.Push(Data2)
 MyStack.Push(Data3)

 MyHashTable.Add(1, Data1)
 MyHashTable.Add(2, Data2)
 MyHashTable.Add(3, Data3)

 MsgBox(MyQueue.Peek)
 MsgBox(MyStack.Peek)
 MsgBox(MyHashTable.Item (2))
End Sub

The first three lines (which start with the Dim keyword) create a queue, a stack,
and a hash table, respectively. The fourth through sixth lines, which start with
the Const keyword, which defines a variable with a fixed or constant value,
create three constant values: an integer (29), a string, ("Joe Smith"), and a single-
precision number (39.05).

Hands-on Tutorial: Playing with Queues, Stacks, and Hash Tables

VBE_02.book Page 343 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

344 Chapter 24

The next three lines add the constant values (29, "Joe Smith", and 39.05) to the
queue data structure using the Enqueue method.

The next three lines add the constant values (29, "Joe Smith", and 39.05) to the
stack data structure using the Push method.

The next three lines add the constant values (29, "Joe Smith", and 39.05) to the
hash table using the Add method. In addition, each item is assigned a key so the
first item gets a key of 1, the second gets a key of 2, and the third gets a key of 3.

The last three lines use the MsgBox command to show you the contents of one
item in each data structure. The first MsgBox command uses the Peek method to
show you the next item that you can remove from the queue, which is the num-
ber 29, the first item stored in the queue.

The second MsgBox command uses the Peek method to show the next item that you
can pop off the stack, which is the number 39.05, the last item added to the
stack.

The third MsgBox command uses the Item method to retrieve the item identified
by the 2 key value, which happens to be the Joe Smith string added to the hash
table.

6. Press F5. Your user interface appears.
7. Click the Button1 control. The first MsgBox command displays a message box with

the number 29.
8. Click OK. The second MsgBox command displays a message box with the number

39.05. Notice that the last item added to a stack is the first item you can remove
from a stack, which is the exact opposite of adding and removing data to a queue.

9. Click OK. The third MsgBox command displays a message box with the string Joe
Smith in it. Click OK.

10. Press ALT-F4 to stop your program, then choose File Close Project. A Close Project
dialog box appears. Click Discard.

K E Y F E A T U R E S T O R E M E M B E R

Queues, stacks, and hash tables are just fancier ways to store data than an array or a
collection. All three types of data structures can store object data types, which means you
can mix different types of data in these data structures.

• A queue is known as a FIFO (First In, First Out) data structure because the first item
stored in the queue is also the first item retrieved from the queue.

• A stack is known as a LIFO (Last In, First Out) data structure because the first item stored
on the stack is the last item retrieved.

• Adding data to a stack is known as pushing data on the stack. Removing data from a
stack is known as popping data from the stack.

• A hash table stores data along with a unique key that identifies that specific chunk
of data.

VBE_02.book Page 344 Wednesday, November 23, 2005 11:56 AM

No Starch Press, Copyright © 2006 by Wallace Wang

