

6
H i g h e r - O r d e r F u n c t i o n s

An important part of all functional programming
languages is the ability to take a function you defined
and then pass it as a parameter to another function.
This binds that function parameter to a variable,
which can be used like any other variable within the function. A function
that can accept other functions transported around this way is called a
higher-order function. As you’ll learn in this chapter, higher-order functions
are a powerful means of abstraction and one of the best tools to master in
Erlang.

Let’s Get Functional
The concept behind carrying functions around and
passing them to higher-order functions is rooted in
mathematics, mainly lambda calculus. Basically, in
pure lambda calculus, everything is a function—even
numbers, operators, and lists. Because everything is
represented as a function, functions must accept other

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

78 Chapter 6

functions as parameters, and must be able to operate on them with even
more functions! (If you want a good, quick introduction to lambda calcu-
lus, read the Wikipedia entry for it.)

This concept might be a bit hard to grasp, so let’s start with an example
(this is nowhere close to real lambda calculus, but it illustrates the point).

-module(hhfuns).
-compile(export_all).

one() -> 1.
two() -> 2.

add(X,Y) -> X() + Y().

Now open the Erlang shell, compile the module, and get going:

1> c(hhfuns).
{ok, hhfuns}
2> hhfuns:add(one,two).
** exception error: bad function one
in function hhfuns:add/2
3> hhfuns:add(1,2).
** exception error: bad function 1
in function hhfuns:add/2
4> hhfuns:add(fun hhfuns:one/0, fun hhfuns:two/0).
3

Confusing? Not so much, once you know how it works (isn’t that always
the case?). In line 2, the atoms one and two are passed to add/2, which then
uses both atoms as function names (X() + Y()). If function names are writ-
ten without a parameter list, then those names are interpreted as atoms,
and atoms cannot be functions, so the call fails. This is why the expression
on line 3 also fails: The values 1 and 2 cannot be called as functions, and
functions are what we need!

To handle this issue, a new notation must be added to the language
in order to pass functions from outside a module. This is the purpose of
fun Module:Function/Arity:, which tells the VM to use that specific function
and then bind it to a variable.

So what are the gains of using functions in that manner? Well, a little
example might help answer that question. We’ll add a few functions to
hhfuns that work recursively over a list to add or subtract one from each
integer of a list.

increment([]) -> [];
increment([H|T]) -> [H+1|increment(T)].

decrement([]) -> [];
decrement([H|T]) -> [H-1|decrement(T)].

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

Higher-Order Functions 79

Do you see how similar these functions are? They basically do the same
thing: cycle through a list, apply a function on each element (+ or -), and
then call themselves again. Almost nothing changes in that code; only the
applied function and the recursive call are different. The core of a recursive
call on a list like that is always the same. We’ll abstract all the similar parts
in a single function (map/2) that will take another function as an argument.

map(_, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

incr(X) -> X + 1.
decr(X) -> X - 1.

Now let’s test this in the shell.

1> c(hhfuns).
{ok, hhfuns}
2> L = [1,2,3,4,5].
[1,2,3,4,5]
3> hhfuns:increment(L).
[2,3,4,5,6]
4> hhfuns:decrement(L).
[0,1,2,3,4]
5> hhfuns:map(fun hhfuns:incr/1, L).
[2,3,4,5,6]
6> hhfuns:map(fun hhfuns:decr/1, L).
[0,1,2,3,4]

Here, the results are the same, but we have just created a very smart
abstraction! Every time we want to apply a function to each element of a list,
we only need to call map/2 with our function as a parameter. However, it is a
bit annoying to need to put every function we want to pass as a parameter
to map/2 in a module, name it, export it, compile it, and so on. In fact, it’s
plainly unpractical. What we need are functions that can be declared on
the fly—the type of functions discussed next.

Anonymous Functions
Anonymous functions, or funs, address the problem of using functions as
parameters by letting you declare a special kind of function inline, with-
out naming that function. Anonymous functions can do pretty much
everything normal functions can do, except call themselves recursively
(how could they do that if they are anonymous?).

Anonymous functions have the following syntax:

fun(Args1) ->
 Expression1, Exp2, ..., ExpN;
 (Args2) ->
 Expression1, Exp2, ..., ExpN;

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

80 Chapter 6

 (Args3) ->
 Expression1, Exp2, ..., ExpN
end

Here’s an example of using an anonymous function:

7> Fn = fun() -> a end.
#Fun<erl_eval.20.67289768>
8> Fn().
a
9> hhfuns:map(fun(X) -> X + 1 end, L).
[2,3,4,5,6]
10> hhfuns:map(fun(X) -> X - 1 end, L).
[0,1,2,3,4]

And now you’re seeing one of the things that make people like func-
tional programming so much: the ability to make abstractions on a very low
level of code. Basic concepts such as looping can thus be ignored, letting
you focus on what is done, rather than how to do it.

More Anonymous Function Power
Anonymous functions are pretty dandy for such abstractions, but they have
more hidden powers. Let’s look at another example:

11> PrepareAlarm = fun(Room) ->
11> io:format("Alarm set in ~s.~n",[Room]),
11> fun() -> io:format("Alarm tripped in ~s! Call Batman!~n",[Room]) end
11> end.
#Fun<erl_eval.20.67289768>
12> AlarmReady = PrepareAlarm("bathroom").
Alarm set in bathroom.
#Fun<erl_eval.6.13229925>
13> AlarmReady().
Alarm tripped in bathroom! Call Batman!
ok

Hold the phone, Batman! What’s going on here? Well,
first of all, we declare an anonymous function assigned to
PrepareAlarm. This function has not run yet. It is executed
only when PrepareAlarm("bathroom") is called. At that point,
the call to io:format/2 is evaluated, and the “Alarm set” text
is output. The second expression (another anonymous
function) is returned to the caller and then assigned to
AlarmReady. Note that in this function, the Room variable’s
value is taken from the “parent” function (PrepareAlarm).
This is related to a concept called closures. But before we can
talk about closures, we need to address the idea of scope.

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

Higher-Order Functions 81

Function Scope and Closures
A function’s scope can be imagined as the place where all the variables and
their values are stored. In the function base(A) -> B = A + 1., for example,
A and B are both defined to be part of base/1’s scope. This means that any-
where inside base/1, you can refer to A and B and expect a value to be bound
to them. And when I say “anywhere,” I ain’t kidding, kid. This includes
anonymous functions, too.

base(A) ->
 B = A + 1,
 F = fun() -> A * B end,
 F().

In this example, B and A are still bound to base/1’s scope, so the function
F can still access them. This is because F inherits base/1’s scope. As with most
kinds of real-life inheritance, the parents can’t get what the children have.

base(A) ->
 B = A + 1,
 F = fun() -> C = A * B end,
 F(),
 C.

In this version of the function, B is still equal to A + 1, and F will still
execute fine. However, the variable C is only in the scope of the anonymous
function in F. When base/1 tries to access C’s value on the last line, it finds
only an unbound variable. In fact, if you tried to compile this function, the
compiler would throw a fit. Inheritance goes only one way.

It is important to note that the inherited scope follows the anonymous
function wherever it is, even when it is passed to another function. Here’s
an example:

a() ->
 Secret = "pony",
 fun() -> Secret end.

b(F) ->
 "a/0's password is "++F().

Now we can compile it.

14> c(hhfuns).
{ok, hhfuns}
15> hhfuns:b(hhfuns:a()).
"a/0's password is pony"

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

82 Chapter 6

Who told a/0’s password? Well, a/0 did. While the anonymous func-
tion has a/0’s scope when it’s declared in there, the function can still carry
it when executed in b/1, as explained earlier. This is very useful because it
lets us carry around parameters and content out of their original context,
where the whole context itself is no longer needed (exactly as we did with
Batman in the previous section).

You’re most likely to use anonymous functions to carry state around
when you have defined functions that take many arguments, but one of these
arguments remains the same all the time, as in the following example.

16> math:pow(5,2).
25.0
17> Base = 2.
2
18> PowerOfTwo = fun(X) -> math:pow(Base,X) end.
#Fun<erl_eval.6.13229925>
17> hhfuns:map(PowerOfTwo, [1,2,3,4]).
[2.0,4.0,8.0,16.0]

By wrapping the call to math:pow/2 inside an anonymous function with
the Base variable bound in that function’s scope, we made it possible to have
each of the calls to PowerOfTwo in hhfuns:map/2 use the integers from the list as
the exponents of our base.

A little trap you might fall into when writing anonymous functions is
when you try to redefine the scope, like this:

base() ->
 A = 1,
 (fun() -> A = 2 end)().

This will declare an anonymous function and then run it. As the anony-
mous function inherits base/0’s scope, trying to use the = operator compares
2 with the variable A (bound to 1). This is guaranteed to fail. However, we
can redefine the variable if we do that in the nested function’s head:

base() ->
 A = 1,
 (fun(A) -> A = 2 end)(2).

And this works. If you try to compile it, you’ll get a warning about shad-
owing: “Warning: variable ‘A’ shadowed in ‘fun’.” Shadowing is the term
used to describe the act of defining a new variable that has the same name
as one that was in the parent scope. This warning is there to prevent some
mistakes (usually rightly so), so you might want to consider renaming your
variables in these circumstances.

Now that we’ve covered scope, we can turn to closures. Closure is just
the idea of having a function that references some environment along with

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

Higher-Order Functions 83

it (the value’s part of the scope). In other words, a closure is what happens
when anonymous functions meet the concept of scope and carrying vari-
ables around.

We’ll set the anonymous function theory aside for now and explore
more common abstractions to avoid needing to write more recursive func-
tions, as I promised at the end of Chapter 5.

Maps, Filters, Folds, and More
At the beginning of this chapter, we took a brief look at how to abstract
away two similar functions to get a map/2 function:

map(_, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

Such a function can be used for any
list where we want to act on each element.
However, there are many other similar
abstractions to build from commonly
occurring recursive functions.

Filters
First, we’ll look at filters. Consider the
following functions:

%% Only keep even numbers.
even(L) -> lists:reverse(even(L,[])).

even([], Acc) -> Acc;
even([H|T], Acc) when H rem 2 == 0 ->
 even(T, [H|Acc]);
even([_|T], Acc) ->
 even(T, Acc).

%% Only keep men older than 60.
old_men(L) -> lists:reverse(old_men(L,[])).

old_men([], Acc) -> Acc;
old_men([Person = {male, Age}|People], Acc) when Age > 60 ->
 old_men(People, [Person|Acc]);
old_men([_|People], Acc) ->
 old_men(People, Acc).

The first of these functions takes a list of numbers and returns only
those that are even. The second one goes through a list of people of the
form {Gender, Age} and keeps only those that are males over 60.

ERLAND

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

84 Chapter 6

The similarities are a bit harder to find here than in the previous exam-
ples, but we have some common points. Both functions operate on lists and
have the same objective of keeping elements that succeed some test (also
called a predicate) and then dropping the others. From this generalization,
we can extract all the useful information we need and abstract them away,
like this:

filter(Pred, L) -> lists:reverse(filter(Pred, L,[])).

filter(_, [], Acc) -> Acc;
filter(Pred, [H|T], Acc) ->
 case Pred(H) of
 true -> filter(Pred, T, [H|Acc]);
 false -> filter(Pred, T, Acc)
 end.

To use the filtering function, we now only need to pass in a predicate
outside of the function. Compile the hhfuns module and try it.

1> c(hhfuns).
{ok, hhfuns}
2> Numbers = lists:seq(1,10).
[1,2,3,4,5,6,7,8,9,10]
3> hhfuns:filter(fun(X) -> X rem 2 == 0 end, Numbers).
[2,4,6,8,10]
4> People = [{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}].
[{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}]
5> hhfuns:filter(fun({Gender,Age}) -> Gender == male andalso Age > 60 end, People).
[{male,66},{male,74}]

These two examples show that with the use of the filter/2 function, the
programmer needs to worry only about producing the predicate and the
list. The act of cycling through the list to throw out unwanted items is no
longer a consideration. This is one important thing about abstracting func-
tional code: Try to get rid of what’s always the same, and let the programmer
supply the parts that change.

Fold Everything
In Chapter 5, we looked at another kind of recursive list manipulation,
where we applied some operation to each element of a list successively to
reduce the elements to a single value. This is called a fold and can be used
to reduce the size of the following functions:

%% Find the maximum of a list.
max([H|T]) -> max2(T, H).

max2([], Max) -> Max;
max2([H|T], Max) when H > Max -> max2(T, H);
max2([_|T], Max) -> max2(T, Max).

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

Higher-Order Functions 85

%% Find the minimum of a list.
min([H|T]) -> min2(T,H).

min2([], Min) -> Min;
min2([H|T], Min) when H < Min -> min2(T,H);
min2([_|T], Min) -> min2(T, Min).

%% Find the sum of all the elements of a list.
sum(L) -> sum(L,0).

sum([], Sum) -> Sum;
sum([H|T], Sum) -> sum(T, H+Sum).

To find how the fold function should be used,
we need to determine all the common points of the
actions made by these functions, as well as what is
different. As mentioned earlier, we always have a
reduction from a list to a single value. Consequently,
our fold function should consider iterating only while
keeping a single item—no list building is needed. We
need to ignore the guards, because they exist in only
some of these functions, not all of them. The guards
will need to be included in the function that we pass
to fold. In this regard, our fold function will probably
look a lot like sum.

A subtle element of all three functions is that every function needs to
have an initial value to start counting with. In the case of sum/2, we use 0, as
we’re doing addition, and given X = X + 0, the value is neutral, so we can’t
mess up the calculation by starting there. If we were doing multiplication,
we would use 1 given X = X * 1.

The functions min/1 and max/1 can’t have a default starting value. If the
list were only negative numbers and we started at 0, the answer would be
wrong. So we need to use the first element of the list as a starting point.
Sadly, we can’t always decide the starting value this way, so we’ll leave that
decision to the programmer.

By taking all these elements, we can build the following abstraction:

fold(_, Start, []) -> Start;
fold(F, Start, [H|T]) -> fold(F, F(H,Start), T).

Let’s try it.

6> c(hhfuns).
{ok, hhfuns}
7> [H|T] = [1,7,3,5,9,0,2,3].
[1,7,3,5,9,0,2,3]
8> hhfuns:fold(fun(A,B) when A > B -> A; (_,B) -> B end, H, T).
9
9> hhfuns:fold(fun(A,B) when A < B -> A; (_,B) -> B end, H, T).
0

F
O
L
D
R

F
O
L
D
R

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

86 Chapter 6

10> hhfuns:fold(fun(A,B) -> A + B end, 0, lists:seq(1,6)).
21

Pretty much any function you can think of that reduces lists to one ele-
ment can be expressed as a fold.

Strangely enough, you can represent an accumulator as a single element
(or a single variable), and an accumulator can be a list. Therefore, we can
use a fold to build a list. This means folding is universal in the sense that
you can implement pretty much any other recursive function on lists with a
fold, even maps and filters, like so:

reverse(L) ->
 fold(fun(X,Acc) -> [X|Acc] end, [], L).

map2(F,L) ->
 reverse(fold(fun(X,Acc) -> [F(X)|Acc] end, [], L)).

filter2(Pred, L) ->
 F = fun(X,Acc) ->
 case Pred(X) of
 true -> [X|Acc];
 false -> Acc
 end
 end,
 reverse(fold(F, [], L)).

These all work in the same way as those written by hand before. How’s
that for powerful abstractions?

More Abstractions
Map, filters, and folds are only a few of many abstractions over lists provided
by the Erlang standard library (see lists:map/2, lists:filter/2, lists:foldl/3,
and lists:foldr/3). Other functions include all/2 and any/2, which both take
a predicate and test if all the elements return true or if at least one of them
returns true, respectively.

Also available is dropwhile/2, which will ignore elements of a list until it
finds one that fits a certain predicate. Its opposite, takewhile/2, will keep all
elements until there is one that doesn’t return true to the predicate. A com-
plementary function to these is partition/2, which will take a list and return
two lists: one that has the terms that satisfy a given predicate and one for
the others.

Other frequently used list functions include flatten/1, flatlength/1,
flatmap/2, merge/1, nth/2, nthtail/2, and split/2. You can look up all of these
functions in the documentation if you want to learn more about them.

You’ll also find other functions such as zipping functions (as shown in
Chapter 5), unzipping functions, combinations of maps and folds, and so
on. I encourage you to read the documentation on lists to see what can be
done. You’ll find yourself rarely needing to write recursive functions as long
as you use what’s already been abstracted away by smart people.

Learn You Some Erlang for Great Good!
©2013, Fred Hébert

