
3
W R I T I N G A S N I F F E R

Network sniffers allow you to see packets
entering and exiting a target machine. As a

result, they have many practical uses before
and after exploitation. In some cases, you’ll be

able to use existing sniffing tools like Wireshark (https://
wireshark.org/) or a Pythonic solution like Scapy (which
we’ll explore in the next chapter). Nevertheless, there’s
an advantage to knowing how to throw together your
own quick sniffer to view and decode network traffic.
Writing a tool like this will also give you a deep appreciation for the mature
tools, as these can painlessly take care of the finer points with little effort
on your part. You’ll also likely pick up some new Python techniques and
perhaps a better understanding of how the low-level networking bits work.

In the previous chapter, we covered how to send and receive data using
TCP and UDP. This is likely how you’ll interact with most network services.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

https://wireshark.org/
https://wireshark.org/

36 Chapter 3

But underneath these higher-level protocols are the building blocks that
determine how network packets are sent and received. You’ll use raw sockets
to access lower-level networking information, such as the raw Internet
Protocol (IP) and Internet Control Message Protocol (ICMP) headers. We
won’t decode any Ethernet information in this chapter, but if you intend
to perform any low-level attacks, such as ARP poisoning, or are developing
wireless assessment tools, you should become intimately familiar with
Ethernet frames and their use.

Let’s begin with a brief walk-through of how to discover active hosts on a
network segment.

Building a UDP Host Discovery Tool
Our sniffer’s main goal is to discover hosts on a target network. Attackers
want to be able to see all of the potential targets on a network so that they
can focus their reconnaissance and exploitation attempts.

We’ll use a known behavior of most operating systems to determine
if there is an active host at a particular IP address. When we send a UDP
datagram to a closed port on a host, that host typically sends back an ICMP
message indicating that the port is unreachable. This ICMP message tells us
that there is a host alive, because if there was no host, we probably wouldn’t
receive any response to the UDP datagram. It’s essential, therefore, that we
pick a UDP port that won’t likely be used. For maximum coverage, we can
probe several ports to ensure we aren’t hitting an active UDP service.

Why the User Datagram Protocol? Well, there’s no overhead in spraying
the message across an entire subnet and waiting for the ICMP responses
to arrive accordingly. This is quite a simple scanner to build, as most of
the work goes into decoding and analyzing the various network protocol
headers. We’ll implement this host scanner for both Windows and Linux
to maximize the likelihood of being able to use it inside an enterprise
environment.

We could also build additional logic into our scanner to kick off full
Nmap port scans on any hosts we discover. That way, we can determine if
they have a viable network attack surface. This is an exercise left for the
reader, and we the authors look forward to hearing some of the creative
ways you can expand this core concept. Let’s get started.

Packet Sniffing on Windows and Linux
The process of accessing raw sockets in Windows is slightly different than
on its Linux brethren, but we want the flexibility to deploy the same sniffer
to multiple platforms. To account for this, we’ll create a socket object and
then determine which platform we’re running on. Windows requires us to

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 37

set some additional flags through a socket input/output control (IOCTL),
which enables promiscuous mode on the network interface An input/output
control (IOCTL) is a means for user space programs to communicate with
kernel mode components. Have a read here: http://en.wikipedia.org/wiki/Ioctl.

In our first example, we simply set up our raw socket sniffer, read in a
single packet, and then quit:

import socket
import os

host to listen on
HOST = '192.168.1.203'

def main():
 # create raw socket, bin to public interface
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 1 sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol)
 sniffer.bind((HOST, 0))
 # include the IP header in the capture
 2 sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 3 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

 # read one packet
 4 print(sniffer.recvfrom(65565))

 # if we're on Windows, turn off promiscuous mode
 5 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

if __name__ == '__main__':
 main()

We start by defining the HOST IP to our own machine’s address and con-
structing our socket object with the parameters necessary for sniffing packets
on our network interface 1. The difference between Windows and Linux is
that Windows will allow us to sniff all incoming packets regardless of pro-
tocol, whereas Linux forces us to specify that we are sniffing ICMP packets.
Note that we are using promiscuous mode, which requires administrative
privileges on Windows or root on Linux. Promiscuous mode allows us to
sniff all packets that the network card sees, even those not destined for our
specific host. Then we set a socket option 2 that includes the IP headers
in our captured packets. The next step 3 is to determine if we are using
Windows and, if so, perform the additional step of sending an IOCTL to

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

http://en.wikipedia.org/wiki/Ioctl

38 Chapter 3

the network card driver to enable promiscuous mode. If you’re running
Windows in a virtual machine, you will likely get a notification that the guest
operating system is enabling promiscuous mode; you, of course, will allow it.
Now we are ready to actually perform some sniffing, and in this case we are
simply printing out the entire raw packet 4 with no packet decoding. This is
just to test to make sure we have the core of our sniffing code working. After
a single packet is sniffed, we again test for Windows and then disable promis-
cuous mode 5 before exiting the script.

Kicking the Tires
Open up a fresh terminal or cmd.exe shell under Windows and run the
following:

python sniffer.py

In another terminal or shell window, you pick a host to ping. Here, we’ll
ping nostarch.com:

ping nostarch.com

In your first window, where you executed your sniffer, you should see
some garbled output that closely resembles the following:

(b'E\x00\x00T\xad\xcc\x00\x00\x80\x01\n\x17h\x14\xd1\x03\xac\x10\x9d\x9d\x00\
x00g,\rv\x00\x01\xb6L\x1b^\x00\x00\x00\x00\xf1\xde\t\x00\x00\x00\x00\x00\x10\
x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
!"#$%&\'()*+,-./01234567', ('104.20.209.3', 0))

You can see that we’ve captured the initial ICMP ping request destined
for nostarch.com (based on the appearance of the IP for nostarch.com,
104.20.209.3, at the end of the output). If you are running this example on
Linux, you would receive the response from nostarch.com.

Sniffing one packet is not overly useful, so let’s add some functionality
to process more packets and decode their contents.

Decoding the IP Layer
In its current form, our sniffer receives all of the IP headers, along with any
higher protocols such as TCP, UDP, or ICMP. The information is packed
into binary form and, as shown previously, is quite difficult to understand.
Let’s work on decoding the IP portion of a packet so that we can pull useful
information from it, such as the protocol type (TCP, UDP, or ICMP) and
the source and destination IP addresses. This will serve as a foundation for
further protocol parsing later on.

If we examine what an actual packet looks like on the network, you
should understand how we need to decode the incoming packets. Refer
to Figure 3-1 for the makeup of an IP header.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 39

Internet Protocol
Bit

offset 0–3 4–7 8–15 16–18 19–31

Version HDR
length Type of service Total length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source IP address

Destination IP address

Options

0

32

64

96

128

160

Figure 3-1: Typical IPv4 header structure

We will decode the entire IP header (except the Options field) and
extract the protocol type, source, and destination IP address. This means
we’ll be working directly with the binary, and we’ll have to come up with a
strategy for separating each part of the IP header using Python.

In Python, there are a couple of ways to get external binary data into a
data structure. You can use either the ctypes module or the struct module
to define the data structure. The ctypes module is a foreign function library
for Python. It provides a bridge to C-based languages, enabling you to use
C-compatible data types and call functions in shared libraries. On the other
hand, struct converts between Python values and C structs represented as
Python byte objects. In other words, the ctypes module handles binary data
types in addition to providing a lot of other functionality, while the struct
module primarily handles binary data.

You will see both methods used when you explore tool repositories on
the web. This section shows you how to use each one to read an IPv4 header
off the network. It’s up to you to decide which method you prefer; either
will work fine.

The ctypes Module
The following code snippet defines a new class, IP, that can read a packet
and parse the header into its separate fields:

from ctypes import *
import socket
import struct

class IP(Structure):
 fields = [

("ihl", c_ubyte, 4), # 4 bit unsigned char
("version", c_ubyte, 4), # 4 bit unsigned char

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

40 Chapter 3

 ("tos", c_ubyte, 8), # 1 byte char
 ("len", c_ushort, 16), # 2 byte unsigned short
 ("id", c_ushort, 16), # 2 byte unsigned short
 ("offset", c_ushort, 16), # 2 byte unsigned short
 ("ttl", c_ubyte, 8), # 1 byte char
 ("protocol_num", c_ubyte, 8), # 1 byte char
 ("sum", c_ushort, 16), # 2 byte unsigned short
 ("src", c_uint32, 32), # 4 byte unsigned int
 ("dst", c_uint32, 32) # 4 byte unsigned int
]
 def __new__(cls, socket_buffer=None):
 return cls.from_buffer_copy(socket_buffer)

 def __init__(self, socket_buffer=None):
 # human readable IP addresses
 self.src_address = socket.inet_ntoa(struct.pack("<L",self.src))
 self.dst_address = socket.inet_ntoa(struct.pack("<L",self.dst))

This class creates a _fields_ structure to define each part of the IP
header. The structure uses C types that are defined in the ctypes module.
For example, the c_ubtye type is an unsigned char, the c_ushort type is an
unsigned short, and so on. You can see that each field matches the IP header
diagram in Figure 3-1. Each field description takes three arguments: the
name of the field (such as ihl or offset), the type of value it takes (such as
c_ubyte or c_ushort), and the width in bits for that field (such as 4 for ihl and
version). Being able to specify the bit width is handy because it provides
the freedom to specify any length we need, not only at the byte level
(specification at the byte level would force our defined fields to always be a
multiple of 8 bits).

The IP class inherits from the ctypes module’s Structure class, which
specifies that we must have a defined _fields_ structure before creating
any object. To fill the _fields_ structure, the Structure class uses the __new__
method, which takes the class reference as the first argument. It creates and
returns an object of the class, which passes to the __init__ method. When
we create our IP object, we’ll do so as we ordinarily would, but underneath,
Python invokes __new__, which fills out the _fields_ data structure immediately
before the object is created (when the __init__ method is called). As long as
you’ve defined the structure beforehand, you can just pass the __new__ method
the external network packet data, and the fields should magically appear as
your object’s attributes.

You now have an idea of how to map the C data types to the IP header
values. Using C code as a reference when translating to Python objects can
be useful, because the conversion to pure Python is seamless. See the ctypes
documentation for full details about working with this module.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 41

The struct Module
The struct module provides format characters that you can use to specify
the structure of the binary data. In the following example, we’ll once again
define an IP class to hold the header information. This time, though, we’ll
use format characters to represent the parts of the header:

import ipaddress
import struct

class IP:
 def __init__(self, buff=None):

header = struct.unpack('<BBHHHBBH4s4s', buff)
 1 self.ver = header[0] >> 4
 2 self.ihl = header[0] & 0xF

self.tos = header[1]
self.len = header[2]
self.id = header[3]
self.offset = header[4]
self.ttl = header[5]
self.protocol_num = header[6]
self.sum = header[7]
self.src = header[8]
self.dst = header[9]

human readable IP addresses
self.src_address = ipaddress.ip_address(self.src)
self.dst_address = ipaddress.ip_address(self.dst)

map protocol constants to their names
self.protocol_map = {1: "ICMP", 6: "TCP", 17: "UDP"}

The first format character (in our case, <) always specifies the endianness
of the data, or the order of bytes within a binary number. C types are repre-
sented in the machine’s native format and byte order. In this case, we’re on
Kali (x64), which is little-endian. In a little-endian machine, the least signifi-
cant byte is stored in the lower address, and the most significant byte in the
highest address.

The next format characters represent the individual parts of the header.
The struct module provides several format characters. For the IP header, we
need only the format characters B (1-byte unsigned char), H (2-byte unsigned
short), and s (a byte array that requires a byte-width specification; 4s means
a 4-byte string). Note how our format string matches the structure of the IP
header diagram in Figure 3-1.

Remember that with ctypes, we could specify the bit-width of the indi-
vidual header parts. With struct, there’s no format character for a nybble
(a 4-bit unit of data, also known as a nibble), so we have to do some manip-
ulation to get the ver and hdrlen variables from the first part of the header.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

42 Chapter 3

Of the first byte of header data we receive, we want to assign the ver
variable only the high-order nybble (the first nybble in the byte). The typical
way you get the high-order nybble of a byte is to right-shift the byte by four
places, which is the equivalent of prepending four 0s to the front of the
byte, causing the last 4 bits to fall off 1. This leaves us with only the first
nybble of the original byte. The Python code essentially does the following:

0 1 0 1 0 1 1 0 >> 4

0 0 0 0 0 1 0 1

We want to assign the hdrlen variable the low-order nybble, or the last 4
bits of the byte. The typical way to get the second nybble of a byte is to use
the Boolean AND operator with 0xF (00001111) 2. This applies the Boolean
operation such that 0 AND 1 produce 0 (since 0 is equivalent to FALSE, and
1 is equivalent to TRUE). For the expression to be true, both the first part
and the last part must be true. Therefore, this operation deletes the first 4
bits, as anything ANDed with 0 will be 0. It leaves the last 4 bits unaltered, as
anything ANDed with 1 will return the original value. Essentially, the Python
code manipulates the byte as follows:

 0 1 0 1 0 1 1 0
AND 0 0 0 0 1 1 1 1

 0 0 0 0 0 1 1 0

You don’t have to know very much about binary manipulation to decode
an IP header, but you’ll see certain patterns, like using shifts and AND over
and over as you explore other hackers’ code, so it’s worth understanding
those techniques.

In cases like this that require some bit-shifting, decoding binary data
takes some effort. But for many cases (such as reading ICMP messages), it’s
very simple to set up: each portion of the ICMP message is a multiple of 8
bits, and the format characters provided by the struct module are multiples
of 8 bits, so there’s no need to split a byte into separate nybbles. In the Echo
Reply ICMP message shown in Figure 3-2, you can see that each parameter
of the ICMP header can be defined in a struct with one of the existing for-
mat letters (BBHHH).

Type

Identifier

Optional data

Sequence number

Code Checksum

 0 4 8 12 16 20 24 28 32

Figure 3-2: Sample Echo Reply ICMP message

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 43

A quick way to parse this message would be to simply assign 1 byte to
the first two attributes and 2 bytes to the next three attributes:

class ICMP:
 def __init__(self, buff):

header = struct.unpack('<BBHHH', buff)
self.type = header[0]
self.code = header[1]
self.sum = header[2]
self.id = header[3]
self.seq = header[4]

Read the struct documentation (https://docs.python.org/3/library/struct
.html) for full details about using this module.

You can use either the ctypes module or the struct module to read and
parse binary data. No matter which approach you take, you’ll instantiate
the class like this:

 mypacket = IP(buff)
 print(f'{mypacket.src_address} -> {mypacket.dst_address}')

In this example, you instantiate the IP class with your packet data in the
variable buff.

Writing the IP Decoder
Let’s implement the IP decoding routine we just created into a file called
sniffer_ip_header_decode.py, as shown here:

import ipaddress
import os
import socket
import struct
import sys

1 class IP:
 def __init__(self, buff=None):

header = struct.unpack('<BBHHHBBH4s4s', buff)
self.ver = header[0] >> 4
self.ihl = header[0] & 0xF

self.tos = header[1]
self.len = header[2]
self.id = header[3]
self.offset = header[4]
self.ttl = header[5]
self.protocol_num = header[6]
self.sum = header[7]
self.src = header[8]
self.dst = header[9]

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

https://docs.python.org/3/library/struct.html
https://docs.python.org/3/library/struct.html

44 Chapter 3

 2 # human readable IP addresses
 self.src_address = ipaddress.ip_address(self.src)
 self.dst_address = ipaddress.ip_address(self.dst)

 # map protocol constants to their names
 self.protocol_map = {1: "ICMP", 6: "TCP", 17: "UDP"}
 try:
 self.protocol = self.protocol_map[self.protocol_num]
 except Exception as e:
 print('%s No protocol for %s' % (e, self.protocol_num))
 self.protocol = str(self.protocol_num)

 def sniff(host):
 # should look familiar from previous example
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 sniffer = socket.socket(socket.AF_INET,
 socket.SOCK_RAW, socket_protocol)
 sniffer.bind((host, 0))
 sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

 try:
 while True:
 # read a packet
 3 raw_buffer = sniffer.recvfrom(65535)[0]
 # create an IP header from the first 20 bytes
 4 ip_header = IP(raw_buffer[0:20])
 # print the detected protocol and hosts
 5 print('Protocol: %s %s -> %s' % (ip_header.protocol,
 ip_header.src_address,
 ip_header.dst_address))

 except KeyboardInterrupt:
 # if we're on Windows, turn off promiscuous mode
 if os.name == 'nt':
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
 sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:
 host = sys.argv[1]
 else:
 host = '192.168.1.203'
 sniff(host)

First, we include our IP class definition 1, which defines a Python
structure that will map the first 20 bytes of the received buffer into a
friendly IP header. As you can see, all of the fields that we identified

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 45

match up nicely with the header structure. We do some housekeeping to
produce some human-readable output that indicates the protocol in use
and the IP addresses involved in the connection 2. With our freshly minted
IP structure, we now write the logic to continually read in packets and
parse their information. We read in the packet 3 and then pass the first 20
bytes 4 to initialize our IP structure. Next, we simply print out the informa-
tion that we have captured 5. Let’s try it out.

Kicking the Tires
Let’s test out our previous code to see what kind of information we are
extracting from the raw packets being sent. We definitely recommend that
you do this test from your Windows machine, as you will be able to see TCP,
UDP, and ICMP, which allows you to do some pretty neat testing (opening
up a browser, for example). If you are confined to Linux, then perform the
previous ping test to see it in action.

Open a terminal and type the following:

python sniffer_ip_header_decode.py

Now, because Windows is pretty chatty, you’re likely to see output
immediately. The authors tested this script by opening Internet Explorer
and going to www.google.com, and here is the output from our script:

Protocol: UDP 192.168.0.190 -> 192.168.0.1
Protocol: UDP 192.168.0.1 -> 192.168.0.190
Protocol: UDP 192.168.0.190 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 74.125.225.183 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183

Because we aren’t doing any deep inspection on these packets, we can
only guess what this stream is indicating. Our guess is that the first couple
of UDP packets are the Domain Name System (DNS) queries to determine
where google.com lives, and the subsequent TCP sessions are our machine
actually connecting and downloading content from their web server.

To perform the same test on Linux, we can ping google.com, and the
results will look something like this:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190

You can already see the limitation: we are seeing only the response
and only for the ICMP protocol. But because we are purposefully building
a host discovery scanner, this is completely acceptable. We will now apply
the same techniques we used to decode the IP header to decode the ICMP
messages.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

46 Chapter 3

Decoding ICMP
Now that we can fully decode the IP layer of any sniffed packets, we have
to be able to decode the ICMP responses that our scanner will elicit from
sending UDP datagrams to closed ports. ICMP messages can vary greatly in
their contents, but each message contains three elements that stay consis-
tent: the type, code, and checksum fields. The type and code fields tell the
receiving host what type of ICMP message is arriving, which then dictates
how to decode it properly.

For the purpose of our scanner, we are looking for a type value of 3 and
a code value of 3. This corresponds to the Destination Unreachable class of
ICMP messages, and the code value of 3 indicates that the Port Unreachable
error has been caused. Refer to Figure 3-3 for a diagram of a Destination
Unreachable ICMP message.

Destination Unreachable Message

0–7 8–15 16–31

Type = 3 Code Header checksum

Unused Next-hop MTU

IP header and first 8 bytes of original datagram’s data

Figure 3-3: Diagram of Destination Unreachable ICMP message

As you can see, the first 8 bits are the type, and the second 8 bits contain
our ICMP code. One interesting thing to note is that when a host sends
one of these ICMP messages, it actually includes the IP header of the orig-
inating message that generated the response. We can also see that we will
double-check against 8 bytes of the original datagram that was sent in order
to make sure our scanner generated the ICMP response. To do so, we simply
slice off the last 8 bytes of the received buffer to pull out the magic string
that our scanner sends.

Let’s add some more code to our previous sniffer to include the ability
to decode ICMP packets. Let’s save our previous file as sniffer_with_icmp.py
and add the following code:

import ipaddress
import os
import socket
import struct
import sys

class IP:
--snip--

1 class ICMP:
 def __init__(self, buff):

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 47

header = struct.unpack('<BBHHH', buff)
self.type = header[0]
self.code = header[1]
self.sum = header[2]
self.id = header[3]
self.seq = header[4]

def sniff(host):
--snip--

ip_header = IP(raw_buffer[0:20])
if it's ICMP, we want it

2 if ip_header.protocol == "ICMP":
print('Protocol: %s %s -> %s' % (ip_header.protocol,

ip_header.src_address, ip_header.dst_address))
print(f'Version: {ip_header.ver}')
print(f'Header Length: {ip_header.ihl} TTL: {ip_header.ttl}')

calculate where our ICMP packet starts
3 offset = ip_header.ihl * 4

buf = raw_buffer[offset:offset + 8]
create our ICMP structure

4 icmp_header = ICMP(buf)
print('ICMP -> Type: %s Code: %s\n' %

(icmp_header.type, icmp_header.code))

except KeyboardInterrupt:
if os.name == 'nt':

sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:

host = sys.argv[1]
 else:

host = '192.168.1.203'
 sniff(host)

This simple piece of code creates an ICMP structure 1 underneath our
existing IP structure. When the main packet-receiving loop determines
that we have received an ICMP packet 2, we calculate the offset in the raw
packet where the ICMP body lives 3 and then create our buffer 4 and
print out the type and code fields. The length calculation is based on the IP
header ihl field, which indicates the number of 32-bit words (4-byte chunks)
contained in the IP header. So by multiplying this field by 4, we know the
size of the IP header and thus when the next network layer (ICMP in this
case) begins.

If we quickly run this code with our typical ping test, our output should
now be slightly different:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
ICMP -> Type: 0 Code: 0

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

48 Chapter 3

This indicates that the ping (ICMP Echo) responses are being correctly
received and decoded. We are now ready to implement the last bit of logic
to send out the UDP datagrams and to interpret their results.

Now let’s add the use of the ipaddress module so that we can cover an
entire subnet with our host discovery scan. Save your sniffer_with_icmp.py
script as scanner.py and add the following code:

import ipaddress
import os
import socket
import struct
import sys
import threading
import time

subnet to target
SUBNET = '192.168.1.0/24'
magic string we'll check ICMP responses for
MESSAGE = 'PYTHONRULES!' 1

class IP:
--snip--

class ICMP:
--snip--

this sprays out UDP datagrams with our magic message
def udp_sender(): 2
 with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sender:
 for ip in ipaddress.ip_network(SUBNET).hosts():
 sender.sendto(bytes(MESSAGE, 'utf8'), (str(ip), 65212))

class Scanner: 3
 def __init__(self, host):
 self.host = host
 if os.name == 'nt':
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 self.socket = socket.socket(socket.AF_INET,
 socket.SOCK_RAW, socket_protocol)
 self.socket.bind((host, 0))

 self.socket.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 if os.name == 'nt':
 self.socket.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

 def sniff(self): 4
 hosts_up = set([f'{str(self.host)} *'])
 try:
 while True:
 # read a packet

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 49

raw_buffer = self.socket.recvfrom(65535)[0]
create an IP header from the first 20 bytes
ip_header = IP(raw_buffer[0:20])
if it's ICMP, we want it
if ip_header.protocol == "ICMP":

offset = ip_header.ihl * 4
buf = raw_buffer[offset:offset + 8]
icmp_header = ICMP(buf)
check for TYPE 3 and CODE
if icmp_header.code == 3 and icmp_header.type == 3:

if ipaddress.ip_address(ip_header.src_address) in 5
ipaddress.IPv4Network(SUBNET):

make sure it has our magic message
if raw_buffer[len(raw_buffer) - len(MESSAGE):] == 6

bytes(MESSAGE, 'utf8'):
tgt = str(ip_header.src_address)
if tgt != self.host and tgt not in hosts_up:

hosts_up.add(str(ip_header.src_address))
print(f'Host Up: {tgt}') 7

handle CTRL-C
except KeyboardInterrupt: 8

if os.name == 'nt':
self.socket.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

print('\nUser interrupted.')
if hosts_up:

print(f'\n\nSummary: Hosts up on {SUBNET}')
for host in sorted(hosts_up):

print(f'{host}')
print('')
sys.exit()

if __name__ == '__main__':
 if len(sys.argv) == 2:

host = sys.argv[1]
 else:

host = '192.168.1.203'
 s = Scanner(host)
 time.sleep(5)
 t = threading.Thread(target=udp_sender) 9

t.start()
s.sniff()

This last bit of code should be fairly straightforward to understand. We
define a simple string signature 1 so that we can test that the responses are
coming from UDP packets that we sent originally. Our udp_sender function 2
simply takes in a subnet that we specify at the top of our script, iterates
through all IP addresses in that subnet, and fires UDP datagrams at them.

We then define a Scanner class 3. To initialize it, we pass it a host as an
argument. As it initializes, we create a socket, turn on promiscuous mode if
running Windows, and make the socket an attribute of the Scanner class.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

50 Chapter 3

The sniff method 4 sniffs the network, following the same steps as in
the previous example, except that this time it keeps a record of which hosts
are up. If we detect the anticipated ICMP message, we first check to make
sure that the ICMP response is coming from within our target subnet 5.
We then perform our final check of making sure that the ICMP response
has our magic string in it 6. If all of these checks pass, we print out the
IP address of the host where the ICMP message originated 7. When we end
the sniffing process by using CTRL-C, we handle the keyboard interrupt 8.
That is, we turn off promiscuous mode if on Windows and print out a sorted
list of live hosts.

The __main__ block does the work of setting things up: it creates the
Scanner object, sleeps just a few seconds, and then, before calling the sniff
method, spawns udp_sender in a separate thread 9 to ensure that we aren’t
interfering with our ability to sniff responses. Let’s try it out.

Kicking the Tires
Now let’s take our scanner and run it against the local network. You can use
Linux or Windows for this, as the results will be the same. In the authors’
case, the IP address of the local machine we were on was 192.168.0.187, so
we set our scanner to hit 192.168.0.0/24. If the output is too noisy when you
run your scanner, simply comment out all print statements except for the
last one that tells you what hosts are responding.

python.exe scanner.py
Host Up: 192.168.0.1
Host Up: 192.168.0.190
Host Up: 192.168.0.192
Host Up: 192.168.0.195

T HE IPA DDR ESS MODUL E

Our scanner will use a library called ipaddress, which will allow us to feed
in a subnet mask such as 192.168.0.0/24 and have our scanner handle it
appropriately.

The ipaddress module makes working with subnets and addressing
very easy. For example, you can run simple tests like the following using the
Ipv4Network object:

ip_address = "192.168.112.3"

if ip_address in Ipv4Network("192.168.112.0/24"):
 print True

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Writing a Sniffer 51

Or you can create simple iterators if you want to send packets to an entire
network:

for ip in Ipv4Network("192.168.112.1/24"):
 s = socket.socket()

s.connect((ip, 25))
send mail packets

This will greatly simplify your programming life when dealing with entire
networks at a time, and it is ideally suited for our host discovery tool.

For a quick scan like the one we performed, it took only a few seconds
to get the results. By cross-referencing these IP addresses with the DHCP
table in a home router, we were able to verify that the results were accurate.
You can easily expand what you’ve learned in this chapter to decode TCP
and UDP packets as well as to build additional tooling around the scanner.
This scanner is also useful for the trojan framework we will begin building
in Chapter 7. This would allow a deployed trojan to scan the local network
for additional targets.

Now that you know the basics of how networks work on a high and low
level, let’s explore a very mature Python library called Scapy.

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

Black Hat Python (Sample) © 1/15/21 by Justin Seitz and Tim Arnold

