
I N D E X

Symbols & Numbers

&& (double ampersand)
as Boolean operator conjunction, 2
using with folds and lists, 78–79

'(apostrophe)
using with functions, 7
using with types, 149–150

* (asterisk)
as multiplication function, 3
using with kinds, 150

** (exponentiation), using with RPN func-
tions, 207–208

\ (backslash), declaring lambdas with, 71
` (backticks) using with functions, 4–5
: (colon)

as cons operator
bytestring version of, 200
using with applicatives, 238–239
using with lists, 8–9

using with infix constructors, 134
:: (double colon)

using in record syntax, 116
using with type annotations, 30, 118
using with types, 24

:k command, identifying kinds with,
150–151

$ (function application operator),
80–81, 83

/ (division), using with RPN functions,
207–208

/= (not-equal-to) operator, 3, 28
= (equal) sign

using with data keyword, 109
using with data types, 122
using with functions, 5

== (double equal sign), 3
using with Eq type class, 28
using with type instances, 139–140

!! (double exlamation point)
in Data.List module, 182
using with lists, 9

> (greater-than) operator, using with
lists, 9–10

>> function, replacing, 279
>>= (bind) function

in A Knight’s Quest, 292
nested use of, 280
using with functions as monads, 311
using with monads, 269–270, 272,

274–280, 283–284, 286
using with Reader monad, 312
using with State monad, 316–317
using with Writer type, 302

-> (arrow)
in type signature, 60–61
using with functions, 25
using with lambdas, 71

-> r as functor and monad, 311
< (less-than) operator, using with lists, 9–10
<*> function

calling with applicative values, 236
left-associative, 233
specializing for IO, 234
using with applicative style, 232
using with liftM function, 325
using with zip lists, 237

<= operator, using with lists, 9–10
<$>, using with applicative style, 231–232
<-, using with I/O actions and

functors, 219
- (minus) operator, using with sections, 62
() (parentheses)

minimizing use of, 81, 83
placement with functions, 7
using with operations, 2, 5
using with sections, 62

(,,) function, using with zip lists, 238

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

364 INDEX

. (period), using with functions, 89

.. (dots), using with value constructors,
113–114

+ (plus) operator, 3, 5
++ (concatenation) operator

excluding from pattern matching, 40
using with lists, 8

; (semicolon), using with let expressions, 46
[] (square brackets), using with lists, 7, 24
[Char] and String types, 30, 127–128
_ (underscore)

in pattern matching, 38
using with lists, 18

| (vertical pipe)
using with data keyword, 109
using with data types, 122
using with guards, 41

|| as Boolean operator disjunction, 2, 256
0 flag, using in Heathrow to London

example, 216
3D vector type, implementing, 121–122

A

accumulators
using with folds, 73
using with right folds, 75
using with scanl and scanr, 79–80

addDrink function, 301–302
algebraic data structures, 137
algebraic data types, 126–127, 133. See also

data types
algebraic expressions, writing, 203–208
All type, using with monoids, 257
ampersands (&&)

as Boolean operator conjunction, 2
using with folds and lists, 78–79

and function
using with applicative functors, 241
using with lists, 78

any function, 92
Any newtype constructor, using with

monoids, 256–257
apostrophe (')

using with functions, 7
using with types, 149–150

appendFile function
in to-do list example, 180
using in I/O, 180

applicative functors, 227–228, 237–238,
323. See also functors

Applicative type class, 228–229, 323
functions as, 235–236

liftA2 function, 238–239
lists as, 232–234, 243–244, 285–287
Maybe types as, 269–270
sequenceA function, 239–242
upgrading, 267–269
zip lists, 237

applicative laws, 238
applicative operators, vs. monads, 278
applicative style, using on lists, 233–234
Applicative type class, 228–229, 323

Maybe implementation, 229–230
style of pure, 230–232

applyLog function
using with monoids, 300
using with Writer monad, 299–300

arithmetic expressions, 2
arrow (->)

in type signature, 60–61
using with functions, 25
using with lambdas, 71

askForNumber function, 197
as-pattern, 40
association lists, 98–100. See also lists
associativity

defined, 251
using with monads, 294–296

asterisk (*)
as multiplication function, 3
using with kinds, 150

B

baby.hs file
appending code to, 6
saving, 5

backslash (\), declaring lambdas with, 71
backticks (`) using with functions, 4–5
Banana on a Wire example, 278–280
base case, reaching, 51
binary functions

using on values, 251
using with folds, 73

binary search tree, implementing, 135–137
bind (>>=) function

in A Knight’s Quest, 292
nested use of, 280
using with functions as monads, 311
using with monads, 269–270, 272,

274–280, 283–284, 286
using with Reader monad, 312
using with State monad, 316–317
using with Writer type, 302

binding to variables, 39

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 365

birds
ignoring in Pierre example, 278–280
representing in Pierre example, 275–278

BMI (body mass index)
calculation of, 41–42
listing of, 45
repeating calculations of, 43

Boolean algebra, 2
Boolean expressions, using with guards, 41
Boolean values

generating randomly, 191
for tossing coin, 193

Bool type, 26, 143–144, 256–257
Bounded type class, 31–32, 126–127
bracket function, using in I/O, 178–179
bracketOnError function, 183–184
breadcrumbs

in filesystem, 355
representing in trees, 346–348
using with lists and zippers, 352–353

bytestrings, 198–202. See also lists
changing types of, 300
copying files with, 201–202
module functions, 201
as monoids, 300
strict and lazy, 199–201

C

Caesar cipher, 92–94
calculations, performing once, 42–45
capital letters, restriction of, 7
capslocker.hs program

exiting, 171
getContents I/O action, 171
saving and compiling, 170

Car data type, 119–120
case expressions, 48–49

vs. if else statements, 48
vs. let expressions, 48
syntax, 48

cat program, 180–181
characters

converting into numbers, 96
shifting, 93

[Char] and String types, 30, 127–128
CharList value constructor, 245–246, 250
Char type, 26
chessboard example, 290–292
circles, representing, 110–112
class constraints, 140, 142
class declarations, 140

code blocks, excluding, 48–49
coin-toss function, 193–195
Collatz sequence, 69–70
colon (:)

as cons operator
bytestring version of, 200
using with applicatives, 238–239
using with lists, 8–9

using with infix constructors, 134
command-line arguments, 184–185
compare function

using Ordering type with, 29
using with guards, 42
using with monoids, 259

computations
deferred, 199
performing, 52

concatenation (++) operator
excluding from pattern matching, 40
using with lists, 8

concrete types, 150–151. See also data types
conditions, adding to list comprehen-

sions, 16
conjunction (&&) Boolean operator, 2
cons (:) operator, using with lists, 8–9
Cons constructor, 133
context of failure, adding to values, 321.
Control.Exception bracketOnError,

183–184
copyFile function, 201
copying files with bytestrings, 201–202
Cube.hs file in Geometry module, 107
Cuboid.hs file in Geometry module, 106
curried functions, 59–62, 222

max, 60
printing functions, 63
sections, 62–63

cycle function, using with lists, 14

D

Data.ByteString.Lazy module, 199
Data.Char module, 93, 96
data keyword, 109–110

vs. newtype, 244–245, 248–249
using, 250

Data.List module, 88–89. See also lists
!! function, 182
any function, 92
delete function, 182
group function, 90
tails function, 91–92
words function, 90

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

366 INDEX

Data.Map module, 114.
fromListWith function, 103
lookup function, 100
Map k v parameterized type, 120

Data.Monoid module
Product type, 255–256
Sum type, 255–256

data structures. See also zippers
reducing to values, 73
using zippers with, 352

data types. See also algebraic data types;
concrete types; recursive data struc-
tures; type constructors; type param-
eters; types

3D vector, 121–122
applying to type constructors, 150–152
defining, 109–110, 122
for describing people, 114–117, 123–124
identifying, 150–151
making, 250
record syntax, 116–117
wrapping with newtype keywords,

244–245
Day type, 127
deferred computation, 199
definitions, functions as, 7
deletetodo.hs program, saving and compil-

ing, 182
derived instances, 122–127. See also type

classes
equating people, 123–124
Read type class, 124–125
Show type class, 124–125

deriving keyword, using with newtype, 245
dictionaries, 98
difference lists, using, 307–309
digitToInt function, 96
disjunction (||) Boolean operator, 2
div function, 4–5
division (/), using with RPN functions,

207–208
do expressions. See also monads

actions of, 219
failure of pattern matching in, 284
let lines in, 282
monadic expressions in, 282
monadic values in, 282
results of, 318
writing, 283

do notation, 280–285, 290
and <-, 156
and list comprehensions, 288
pattern matching and failure, 284–285
using with Writer monad, 303–304

dots (..), using with value constructors,
113–114

double colon (::)
using in record syntax, 116
using with type annotations, 30, 118
using with types, 24

double equal sign (==), 3
using with Eq type class, 28
using with type instances, 139–140

Double type, 26
drop function, using with lists, 12

E

Either, kind of, 151
Either a b type, 130–132, 149–150
Either e a type, 321–322
elem function

using recursively, 55–56
using with lists, 12

end-of-file character, issuing, 170
Enum type class, 31, 126–127
equal (=) sign

using with data keyword, 109
using with data types, 122
using with functions, 5

equality (== and /=) operators, 3
equality testing, 28
Eq type class, 28, 122–124, 138–139,

141, 250
erroneous computation, representing, 247
error function

calling, 178
using in pattern matching, 39

Error instance, 322
error messages, 3
Euclid’s algorithm, 304–305
exceptions, raising, 178, 247–248
exponentiation (**), using with RPN func-

tions, 207–208
exporting

functions, 104
shapes in modules, 113–114

expressions
determining types of, 24
equivalent examples of, 71–72
lambdas as, 71
using operations in, 2

F

factorial function, 25, 36
failure, adding context of, 321
False Boolean value, 2–3

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 367

Fibonacci sequence, specifying recur-
sively, 51–52

file contents vs. handles, 177
files

copying with bytestrings, 201–202
processing as strings, 199
reading and writing, 175–180

filesystem
manipulating, 357–358
moving up and down in, 356–357
representing via zippers, 353–358

filter function, 67–70
vs. takeWhile, 80
using fold with, 77

filtering over lists, 198–199
FilterM monadic function, 328–331
fixity declaration, 134
flip function, 65–66, 78
floating-point numbers, precision of, 337
Floating type class, 32
Float type, 25–26
fmap function

concept of, 223
as function composition, 222
as infix function, 221
vs. liftM, 324–325
using over functions, 221
using with newtype, 246

folding function
using with monoids, 262–265
using with RPN, 206–207

foldl function, 74, 76
vs. scanl, 79
stack overflow errors, 94–95

FoldM monadic function, 331–332
fold pattern, example of, 99
foldr function, 75–76, 78–79. See also right

fold function
vs. scanr, 79
using binary search tree with, 137

folds
accumulators, 73
binary functions, 73
concept of, 77–78
examples, 76–77
left vs. right, 75

forever I/O function, 165–166
for loops, 198
forM I/O function, 166–167
fromListWith function, 103
fst function

type of, 27
using with pairs, 20

function application operator ($),
80–81, 83

function composition, 82–84
fmap as, 222
module functions, 91
with multiple parameters, 83–84
performing, 89
point-free style, 84–85
right-associative, 82

function f, mapping over function g,
310–311

function parameters, pattern matching
on, 48–49

functional programming, pattern in, 22
functions

. (period) symbol used with, 89
accessing, 88
as applicatives, 235–236
applying for monads, 275–276
applying to lists, 66–67
applying with - (minus) operator, 347
behavior of, 153–154
calling, 3–6
combining, 6
concept of, 61
creating, 5–7, 310–311
defining, 35–36
as definitions, 7
exporting from modules, 104
filter, 67–70
as functors, 220–223, 311
importing from modules, 89
infix, 3–4
lifting, 222
loading, 6
in local scope, 46
map, 66–70
mapping with multiple parameters,

70–71
as monads, 311
optimal path, 212–215
partially applied, 60, 64, 71
polymorphic, 27
prefix, 3–4
printing, 63
referencing from modules, 89
relating to people, 115
searching for, 88
for shapes, 112–113
with side effects, 153–154
syntax, 5
type declarations, 205
types of, 24–25

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

368 INDEX

functions (continued)
using, 6–7
using once, 71–73
value constructors as, 110, 112, 114
values returned by, 6–7
for vectors, 121–122
in where blocks, 45

functor laws
1 and 2, 223–225
breaking, 225–227

functors, 218, 323. See also applicative
functors

converting maps into, 149–150
functions as, 220–223
I/O actions as, 218–220

Functor type class, 146–150, 227
definition of, 152
Either a type constructor, 149–150
Maybe type constructor, 147–148
Tree type constructor, 148–149

functor values, functions in, 227

G

gcd function, 304–306
gcdReverse function, efficiency of, 309
generics vs. type variables, 27
gen generator example, 313
Geometry module, 104–107
getContents I/O action, 171–173
get function, using with state, 318–319
getStdGen I/O action, 195–196
GHC compiler, invoking, 155
GHCi, let expressions in, 47
ghci, typing, 1
ghci> prompt, 1
girlfriend.txt file

caps-locked version of, 180
opening, 175

global generator, implementing, 195
greater-than (>) operator, using with lists,

9–10
greatest common divisor, calculating,

304–305
group function, using with words function,

90–91
guard function, using with monads, 289
guards. See also functions

vs. if/else trees, 41
vs. if expressions, 40–41
otherwise, 41
vs. patterns, 40–41
using, 41–42

H

haiku.txt input, 170
handles vs. file contents, 177
Haskell

laziness of, 247
as pure language, 313

haystack and needle lists, 91–92
head function, using with lists, 10–11
Heathrow to London example

optimal path function, 212–215
quickest path, 209–211
road system, 211–212
road system from input, 215–216
stack overflow errors, 216

Hello, world! program
compiling, 154–155
defining main, 154
function types, 155
printed output, 155
running, 155

hierarchical modules, 104–106
higher-order functions. See also functions

curried functions, 59–64
flip, 65–66
map, 66–70
type declaration, 63
zipWith, 64–65

Hoogle search engine, 88

I

id function, 144, 223–224
if else statements vs. case expressions, 48
if/else trees vs. guards, 41
if expressions, 40–41, 143, 145
if statement, 6–7
I’ll Fly Away example, 276–278
importing modules, 88–89
infinite lists, using, 14
infix functions, 3–5, 12, 27. See also

functions
applying, 62–63
defining automatically, 133–134

init function, using with lists, 10–11
input, transforming, 173–175
input redirection, 170
input streams, getting strings from,

171–173
instance declarations, 142
instance keyword, 139
Integer type, 25
Integral type class, 33
interactive mode, starting, 1
Int type, 25

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 369

I/O (input and output)
appendFile function, 180
bracket function, 178–179
files and streams, 169–175
and randomness, 195–198
readFile function, 179
withFile function, 177–178
writeFile function, 179–180

I/O actions
<- vs. let bindings, 159
binding names, 158–159
do blocks, 219
do notation, 156–161
as functors, 218–220
getArgs, 184–185
getContents, 171–173
getLine type, 156
getProgName, 184–185
gluing together, 156–161
let syntax, 158–159
making from pure value, 160
vs. normal values, 157
performing, 155, 157
results yielded by, 153, 157
return function, 160–161
reverseWords function, 159–161
review, 167
in System.Environment module, 184–185
tellFortune function, 157
using sequenceA function with, 242
using with monads, 293

I/O functions
forever, 165–166
forM, 166–167
mapM, 165
print, 162–163
putChar, 162
putStr, 161–162
sequence, 164–165
when, 163–164

IO instance of Applicative, 234–235
isPrefixOf function, using with strings, 92

J

join monadic function, 326–328

K

:k command, identifying kinds with,
150–151

key/value mappings, achieving, 98–104
Knight’s Quest, A (example), 290–292

L

lambdas, 71–73. See also functions
declaring, 71
in function composition, 82
in Heathrow to London example, 216
using with folds, 74

landLeft and landRight functions, 276–277
last function, using with lists, 10–11
less-than (<) operator, using with lists, 9–10
left fold function, 74. See also foldl function

in Heathrow to London example,
213–215

using with RPN function, 205
Left value, feeding to functions, 322
length function, using with lists, 11, 17–18
let expressions

vs. case expressions, 48
in GHCi, 47
in list comprehensions, 46–47
pattern matching with, 46
using, 45–46
vs. where bindings, 45–46

let keyword
using with lists, 16
using with names, 8

liftA2 function, using with applicative
functors, 238–239

liftM monadic function, 323–326
list comprehensions, 15–18

and do notation, 288
pattern matching with, 38–40
using with tuples, 21–22

list monad, 285–287. See also monads
list operations

cycle function, 14
drop function, 12
elem function, 12
head function, 10–11
init function, 10–11
last function, 10–11
length function, 11
maximum function, 12
null function, 11
odd function, 16
repeat function, 14
replicate function, 15
reverse function, 11
sum function, 12
tail function, 10–11
take function, 12

list ranges, using Enum type in, 29. See also
ranges

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

370 INDEX

lists. See also association lists; bytestrings;
Data.List module; task list program;
zip lists

accessing elements of, 9
adding to, 8
and function, 78
as applicative functors, 232–234,

237–238, 243–244, 285–287
applying functions to, 66–67
binding elements from, 15
checking empty status of, 11
combining, 15–18
comparing, 9–10
concatenation, 8–9
construction of, 306–307
converting trees to, 265
drawing elements from, 15
efficiency of, 306–307
filtering, 15–18, 198–199
folding, 73–74
getting last elements of, 77
including predicates in, 16–17
infinite, 14
inside lists, 9
managing via module functions, 91–92
mapping over, 198–199
as monoids, 253–254, 300
as nondeterministic computations, 233
number ranges in, 13–15
pattern matching with, 38–40
promise of, 199
recursive functions on, 99
replacing odd numbers in, 16
sorting, 56–58
square brackets ([]) used with, 7
transforming, 15–18
vs. tuples, 18, 20, 24
using applicative style on, 233
using with filter function, 67
using with RPN functions, 205–206
using zippers with, 352–353

locker codes, looking up, 132
logging, adding to programs, 304–306
logical or (||), using with monoids, 256
log type, changing type of, 300
log values. See also values

applyLog function, 299–300
implementing, 305–306
using Writer monad for, 298

M

main
defining for Hello, world!, 154–155
defining for task list, 186

map function, 66–70, 73, 75
mapM I/O function, 165
mappend function

using with folds and monoids, 263
using with Maybe and Monoid, 260
using with Monoid type class, 252, 254
using with Ordering values, 258–259
using with Writer monad, 300
using with Writer type, 303

mapping over lists, 198–199
maps. See also Data.Map module

vs. association lists, 100
converting association lists to, 100
converting into functors, 149–150
type of keys in, 120

maxBound function, using with Bounded
type, 31

max function, curried, 60
maximum function

in recursion example, 52–53
using with lists, 12

max prefix function, calling, 4
Maybe instance, using with Monad type class,

273–280
Maybe monad

using with trees, 358
vs. Writer monad, 299

Maybe type, 118–119
Applicative implementation, 229–230
for folds and monoids, 262
as functor, 147–148
identifying, 151
implementation of >>=, 280
as instance of Monoid, 260–261
as monad, 269–271
wrapping with newtype, 261

mconcat function, using with Monoid type
class, 252–254, 261

mempty function
using with Monoid type class, 252, 254–255
using with Writer type, 303
vs. mzero, 288–289

messages
decoding, 94
encoding, 93

minBound function, using with Bounded
type, 31

min prefix function, calling, 4
minus (-) operator, using with sections, 62
module functions

Caesar cipher, 93–94
counting words, 90–91
finding numbers, 95–98
list management, 91–92
on strict left folds, 94–95

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 371

modules. See also functions
accessing from GHCi, 88
advantages of, 87
exporting functions, 104
exporting shapes in, 113–114
geometry, 104–106
hierarchical, 106–107
importing, 88–89
loosely coupled, 87
qualified imports of, 89
reading source code for, 89
referencing functions from, 89

monadic functions
composing, 335–336
FilterM, 328–331
FoldM, 331–332
join, 326–328
liftM, 323–326

Monad instance, 311
monad laws, 292–293, 339–340
MonadPlus type class, 288
monads, 323. See also do expressions; list

monad; monoids; Reader monad;
State monad; Writer monad

applying functions, 275–276
associativity, 294–296
do notation, 280–285
functions as, 311
guard function, 289
left identity, 293
making, 336–341
Maybe types as, 269–271
as monoids, 288
in mtl package, 297
nested use of >>=, 280
nondeterministic values, 285–287
purpose of, 268–269
right identity, 294
using with trees, 358–359

MonadState type class, 318–319
Monad type class

>> function, 273, 279
>>= (bind) function, 272–273
fail function, 273, 278, 284
Maybe instance, 273
return function, 272

monoids. See also monads
All type, 257
Any newtype constructor, 256–257
attaching to values, 302
Bool type, 256–257
bytestrings as, 300
comparing strings, 258–259
composition of, 252
Data.Monoid module, 255

defined, 252
folding with, 262–265
laws, 253, 255
lists as, 253–254, 300
monads as, 288
newtype keyword, 243–244
numbers as, 254–255
Ordering type, 257–259
type class, 252
using with Writer monad, 306–307

Monoid type class
defining, 252
mappend function, 252, 254, 263
mconcat function, 252–254, 261
mempty function, 252, 254–255
newtype keyword, 243–244

monoid values, including, 304
mtl package, monads in, 297
multiplication (*) function, 3
mzero vs. mempty, 288–289

N

"\n" (newline) character, adding, 180
names

defining, 8
functions as, 7

needle and haystack lists, 91–92
negative number constants, 2
newline ("\n") character, adding, 180
newStdGen action, 196
newtype declarations, using record syntax

in, 250
newtype keyword, 249–250

vs. data keyword, 244–245, 248–249
using, 247–249
using with monoids, 243–244
using with Product and Sum types, 255–256
using with type class instances, 246–247
using with Writer type, 302
wrapping Maybe with, 261

newtype wrapper, using with State
monad, 317

NO! alert, 143, 145
nondeterministic values

representing, 336
using with monads, 285–287

not Boolean operator, 2
not-equal-to (/=) operator, 3, 28
Nothing value

in do notation, 281
in pattern matching, 284–285
producing in Banana on a Wire, 278–279

null function, using with lists, 11
number constants, negative, 2

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

372 INDEX

number ranges, listing, 13–15
numbers. See also random generators; RPN

expressions
converting characters into, 96
filtering, 288
finding via modules, 95–98
getting chain of, 69–70
guessing, 196–197
inserting in phoneBook, 101–102
as monoids, 254–255

Num type class, 32, 140

O

odd function, using with lists, 16
operations

precedence of, 4
using in expressions, 2

or (||) Boolean operator, 2
Ordering type, using with monoids, 257–260
order of operations, specifying, 2
Ord type class, 28–29, 125–126, 250
otherwise guards, 41
output, filtering via list

comprehensions, 288

P

package, defined, 297
pairs, storing data in, 20
parameterized types, 120–122
parameters, using = operator with, 5
parentheses, ()

minimizing use of, 81, 83
placement with functions, 7
using with operations, 2, 5
using with sections, 62

pattern matching, 35–37
as-pattern, 40
error function, 39
failure in do notation, 284–285
failure of, 37
on function parameters, 48–49
with let expressions, 46
with list comprehensions, 38–40
with lists, 38–40
tell function, 39
with tuples, 37–38
using with constructors, 111
using with monads, 338
using with newtype keywords, 247
using with type class instances, 140
with where keyword, 44–45
x:xs pattern, 38

patterns
vs. guards, 40–41
using with RPN functions, 206

people, describing via data types, 123–124
performance

comparing via Writer monad, 309–310
enhancing via bytestrings, 202

period (.), using with functions, 89
phoneBook

association list, 99, 101–104
using type synonyms with, 128–129

Pierre example
of do notation, 282–284
of monads, 274–280

plus (+) operator, 3, 5
Point data type, using with shapes, 112–113
point-free style

converting function to, 206
defining functions in, 84–85

pole, representing in Pierre example,
274–277

polymorphic functions, 27
pop function, using with stacks,

314–315, 317
powerset, getting, 330
predicates

adding to list comprehensions, 16–17
using with filter function, 67

prefix functions, calling, 3–4
Prelude> prompt, 1
printing

functions, 63
text files to terminal, 180–181

print I/O function, 162–163
probabilities, expressing, 337–339
problems, implementing solutions to, 205
Product type, using with monoids, 255–256
programs, 87

adding logging to, 304–306
exiting, 174

prompt, changing, 1
pure method

using with applicative functors,
228–230, 232

using with zip lists, 237
push function, using with stacks, 314–315
putChar I/O function, 162
put function, using with state, 318–319
putStr I/O function, 161–162
putStrLn function, type of, 155

Q

quicksort algorithm, 56–58

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 373

R

-> r, as functor and monad, 311
random data, getting, 190–198
random function, 320. See also functions

RandomGen type class, 191
Random type class, 191
StdGen type, 192
type signature, 191
using, 192

random generators, 313. See also numbers
making, 192
regenerating, 196

randomness and I/O, 195–198
randoms function, 194–195
random string, generating, 195–196
ranges. See also list ranges

using with floating-point numbers, 15
using with lists, 13–15

Rational data type, 337
readability, improving via where keyword, 43
Reader monad, 312. See also monads
readFile function, 179
reading files, 175–180
Read type class, 29–31
record syntax

using in newtype declarations, 250
using to create data types, 116–117

rectangles, representing, 110–112
recursion, 51

approaching, 58
base case, 51
in Heathrow to London example, 215
in mathematics, 51–52
using with applicative functors, 239
using with Functor type class, 148–149

recursive data structures, 132–137. See also
data types

algebraic data types, 132–133
binary search tree, 135–137
infix functions, 133–135

recursive definition, 194
recursive functions, 36, 38. See also

functions
defining, 51
elem, 55–56
maximum, 52–53
operating on lists, 99
repeat, 55
replicate, 53–54
reverse, 55
take, 54–55
writing, 52–53
zip, 55–56

repeat function
using recursively, 55
using with lists, 14

replicate function
using recursively, 53–54
using with lists, 15

return function
in Monad type class, 272
using with Writer type, 303

reverse function
using fold with, 76–77
using recursively, 55
using with lists, 11

reverse polish notation (RPN), 203–208
right fold function, 75–76. See also foldr

function
right triangle, finding, 21–22
Right value, feeding to functions, 322
road system

getting from input, 215–216
representing, 211–212

RPN (reverse polish notation), 203–208
RPN calculator

failures, 334
folding function, 333–334
making safe, 332–334
reads function, 333

RPN expressions, calculating, 204. See also
expressions; numbers

RPN functions. See also functions
sketching, 205–206
writing, 205–207

RPN operators, 207–208

S

scanl function, 79–80
scanr function, 79–80
sections, using with infix functions, 62–63
semicolon (;), using with let expressions, 46
sequenceA function, using with applicative

functors, 239–242
sequence I/O function, 164–165
set comprehensions, 15
shapes

exporting in modules, 113–114
improving with Point data type, 112–113
representing, 110–112

shortlinesonly.hs program, compiling, 173
shortlines.txt file

redirecting contents of, 173
saving, 172

Show type class, 29
side effects, 153–154

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

374 INDEX

snd function, using with pairs, 20
sorting lists, 56–58
source code, reading for modules, 89
Sphere.hs file, in Geometry module, 106
square brackets ([]), using with lists, 7, 24
square roots, getting for natural

numbers, 80
stack overflow errors, 94, 216
stacks

keeping for RPN functions, 205–206
modeling for stateful computations,

314–315
popping elements from, 314
pushing elements to, 314

state, getting and setting, 318–319
stateful computations, 313–314

assigning types to, 314
stack modeling, 314–315

State monad. See also monads
and randomness, 320
using, 315–318

steps, using with ranges in lists, 13–14
String and [Char] type, 30, 127–128
strings, 8

comparing via monoids, 258–259
converting to uppercase, 128
encoding, 93
getting, 196
getting from input streams, 171–173
isPrefixOf function, 92
processing files as, 199
representing values as, 29

String type, using with type synonyms, 129,
131–132

subclassing type classes, 140
subtrees, focusing on, 346–347
succ: function, calling, 4
sum function

using with fold, 74
using with lists, 12, 17–18

Sum type, using with monoids, 255–256
System.Environment module

getArgs I/O action, 184–185
getProgName I/O action, 184–185

System.IO, openTempFile function, 182
System.Random module

getStdGen I/O action, 195
mkStdGen function, 192
random function, 191–192

T

:t (type) command, 24, 26, 65
tail function, using with lists, 10–11

tails function, 91–92
take function

using recursively, 54–55
using with lists, 12

takeWhile function, 69, 80
task list program, 188–189. See also lists

add function, 186–187, 190
bad input, 190
calling, 186–187
dispatch function, 189–190
implementing functions, 186–187
list-viewing functionality, 187
remove function, 187–188
running, 189
view function, 187

tasks. See to-do list
tell function, using with log values,

305–306
terminal

printing text files to, 180–181
reading from, 175
writing to, 175

text files, printing to terminal, 180–181
threeCoins stateful computation, 320
thunk, defined, 199
to-do list

adding tasks to, 185
appendFile function, 180
bracketOnError function, 183
cleaning up, 183–184
deleting items from, 181–183
functionality, 185
removing tasks from, 186
viewing tasks, 186

traffic light, defining states of, 139–140,
144–145

trees. See also zippers
balancing, 135
converting to lists, 265
going to tops of, 351
manipulating under focus, 350–351
mapping, 148
moving up in, 348–350
nodes for monoids, 265
nonempty node for monoids, 264
providing safety nets for, 358–360
representing breadcrumbs, 346–348
subtrees of, 346–347
using monads with, 358–359
using with folds and monoids, 263
in zippers example, 344–346

Tree type constructor, as instance of Func-
tor, 148–149

triangle, right, 21–22

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

INDEX 375

triples
pattern matching, 38
using with road system, 212

True Boolean value, 2–3
tuples

changing vectors to, 19
fixed size of, 19–20
vs. lists, 18, 20, 24
pairs, 19–20
pattern matching with, 37–38
triples, 19, 21–22
as types, 26
using, 19–20
using commas with, 19
using parentheses with, 19
using with list comprehensions, 21–22
using with road system, 212
using with shapes, 110

two-dimensional vector, representing,
19–20

type annotations, 29
type class constraints, 120–121
type classes, 27, 33, 122–123. See also

derived instances
Bounded, 31–32, 126–127
displaying instances of, 142–143
Enum, 31, 126–127
Eq, 28, 123–124, 138–139, 141
Floating, 32
Functor, 146–150
instances of, 141–143
Integral, 33
minimum complete definition of, 139
Monad, 272–273
Num, 32
open quality of, 217
Ord, 28–29, 125–126
Read, 29–31, 124–125
reviewing, 138
Show, 29, 124–125
subclassing, 140
using, 250
YesNo, 143–146

type class instances, using newtype with,
246–247

type constructors, 117. See also data types
applying types to, 150–152
as instances of Functor type class, 218,

225–226
parameters, 150
type parameters for, 141
vs. value constructors, 122, 130

type declarations, 24–25, 205
in higher-order functions, 63
for zipWith function, 64

type inference, 23
type instances, making, 139–140
type keyword, 128, 249
type names, capitalization of, 24, 26
type parameters, 117–119. See also

data types
passing types as, 118
using, 119–121

types. See also data types
Bool, 26
Char, 26
Double, 26
Float, 25–26
of functions, 24
Int, 25
Integer, 25
tuples as, 26

type signatures, 110
type synonyms, 127–132, 249–250

Either a b type, 130–132
for knight’s position, 290
parameterizing, 129–130
for zipper in filesystem, 355

type system, 23
type variables, 26–27, 231

U

undefined value, 247–248
underscore (_)

in pattern matching, 38
using with lists, 18

V

value constructors
for Either a b type, 130–131
exporting, 113–114
as functions, 110, 112, 114
parameters, 117
vs. type constructors, 122, 130
using .. (dots) with, 113–114
using with shapes, 110

values. See also log values
adding context of failure to, 321
applying functions to, 347
attaching monoids to, 302
concept of, 343
expressing as strings, 29
mapping keys to, 98–104
reducing data structures to, 73
returning in functions, 6–7
testing for equality, 3
using Ord type class with, 28–29

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

376 INDEX

values with contexts, using monads with,
268–269

variables
binding to, 39
binding via let expressions, 45

vectors
changing to tuples, 19
implementing types for, 121–122

vertical pipe (|)
using with data keyword, 109
using with data types, 122
using with guards, 41

W

when I/O function, 163–164
where bindings vs. let expressions, 45–46
where blocks, functions in, 45
where keyword, 42–43

pattern matching with, 44–45
scope of, 44

while loops, 198
withFile function, using in I/O, 177–178
words, counting, 90–91
words.txt file, creating and saving, 175
writeFile function, 179–180
Writer monad, 298–300. See also monads

adding logging to programs, 304–306
applyLog function, 299
changing log type, 300
comparing performance, 309–310
difference lists, 307–309
inefficient list construction, 306–307
vs. State monad, 316
using do notation with, 303–304
using monoids with, 300–302, 306–307

Writer type, 302–303
writing files, 175–180

X

x:xs pattern, using, 38

Y

YEAH! alert, 143, 145
YesNo type class, 143–146

Z

zip function
using recursively, 55–56
using with pairs, 20

zip lists, 237, 244. See also lists
zippers. See also data structures; trees

defined, 350
filesystem example, 353–358
focus of, 350–351
for lists, 352–353
using with data structures, 352

zipWith function, 64–65, 73

Learn You a Haskell for Great Good!
© 2011 by Miran Lipovača

