
C O M M O N P R O T O C O L S

This chapter is an overview of some of the
more common protocols that appear in

Wireshark. We will look at sample trace files
containing working examples of several different

protocols and then discuss how each one functions.
My goal here is to help you understand each of these
protocols and give you a baseline for comparison when analyzing protocols
that you suspect aren’t working correctly. This chapter contains some very
important basic protocol information. Skipping it would be like watching
part two of a movie without seeing part one—the following chapters just won’t
make sense.

NOTE I won’t go into great detail about the design of each individual protocol; instead, I
have provided the associated RFC number for each. An RFC, or request for comments, is
the official document that defines the implementation standards for protocols in the
TCP/IP stack. You can search for RFC documentation at the RFC Editor home page,
http://www.rfc-editor.org.

62 Chapter 6

Address Resolution Protocol

arp.pcap

We’ll start with Address Resolution Protocol (ARP) because it is one of the
simpler protocols, requiring only a few packets to complete its entire opera-
tion. ARP (RFC 826) is used to translate Layer 3 (IP) addresses into Layer 2
(MAC) addresses, thus allowing devices (such as switches and routers) to
determine where other devices are located on each port.

The funny thing about ARP is that it actually provides service to two
different layers of the OSI model: the network layer and the data link layer.

When a computer wants to transmit data to another computer, it must
first know where that computer is. This is done with the aid of the switch or
router connecting the two computers and the ARP protocol.

Now take a look at our capture file, as shown in Figure 6-1. Note that in
the first packet, our source computer (01:16:ce:6e:8b:24) is sending a packet
to ff:ff:ff:ff:ff:ff asking, Who has 192.168.0.1?.

Figure 6-1: The whole ARP process only involves two packets—a request and a reply.

As you learned earlier, a switch only operates on Layer 2; it has no
knowledge of a computer’s Layer 3 address. What does the computer do,
then? Well, what do you do when you don’t know the first name of the Smith
you want to call? You call every Smith in the phone book until you reach the
right one!

ARP provides the functionality to find the client’s Layer 3 address by
allowing the transmitting computer to send an ARP broadcast. This broadcast
is a packet sent to the Layer 2 address ff:ff:ff:ff:ff:ff, the standard broadcast
address; the packet is then forwarded to every computer in that switch’s
broadcast domain.

This packet’s only function is to ask every computer it contacts whether
or not it has an IP address of 192.168.0.1. Computers with a different IP
address will simply drop the packet, while the one that has it will identify
itself by sending a response containing its Layer 2 address back to the
transmitting computer.

The second packet (also shown in Figure 6-1) shows the destination
computer’s ARP response to the first packet. The response is a very straight-
forward one: 192.168.0.1 is at 00:13:46:0b:22:ba. From this point forward, the
transmitting computer will know the Layer 2 address of the destination
computer and will be able to send data directly to it.

Dynamic Host Configuration Protocol

dhcp.pcap

Dynamic Host Configuration Protocol (DHCP) is another fairly simple
protocol. DHCP (RFC 2131) automatically provides clients with network-
related configuration information, such as a domain name, NTP server
address, or a unique Layer 3 (IP) address. The DHCP communication

Common Pro tocols 63

process is a client/server communication type in which the client computer
requests an IP address from a DHCP server and the server acknowledges it by
giving it one.

The basic functionality of DHCP is a simple four-step process. The
process begins with packet 1 when the client computer sends a DHCP
Discover packet to the broadcast IP address 255.255.255.255 (as shown
in Figure 6-2).

Figure 6-2: DHCP begins with a DHCP Discover packet, as shown here.

When a client wants to obtain an IP address on a network, it must first
locate a valid DHCP server on that network. It does so by sending a broadcast
packet designed to locate any valid DHCP servers on the network. When a
valid DHCP server receives one of these packets, it sends a response to the
client in a DHCP Offer packet, as seen in packet 2 (Figure 6-3). This packet
contains the IP address that the DHCP server wants to assign to the client
and any other information the server is configured to supply.

Figure 6-3: The DHCP Offer packet is the server’s response to the client.

Once the client receives this packet, it requests the addressing information
from the server by sending a DHCP Request packet, which is packet 3 in our
sample file. Since the client has not yet configured itself with the given IP
address, this packet is once again sent as a broadcast; this tells the server that
the client has accepted its offer and notifies all other DHCP servers on the
network that the client is no longer accepting other offers. Once the server
receives this packet, it assigns this IP address to the client and sends a DHCP
ACK packet back to the client, as seen in packet 4 (Figure 6-4), signifying the
end of the DHCP transaction.

Figure 6-4: The Packet Details pane shows all of the details for this DHCP ACK packet.

Notice that each DHCP transaction has a specific Transaction ID that can
be seen under the Info heading in the Packet List pane. These Transaction IDs
allow the DHCP server to identify and separate each client transaction. This
is important because it allows you to keep each transaction separate in the
analysis process.

Though we’ve covered only four, you may find up to eight different
types of DHCP packets in a capture file. (For more on these and other
DHCP functions, read the DHCP RFC.)

64 Chapter 6

TCP/IP and HTTP

http.pcap

TCP/IP is the basis for almost all of the communication we will discuss in this
book. Because it is the most widely used network protocol, we will focus on it.

Hypertext Transfer Protocol (HTTP, RFC 2616) is the server/client–based
protocol used to transfer web pages across a network. A simple HTTP
transaction is a good example of TCP/IP communication. Every time you
search the Internet with Google, check the weather, or even check your
fantasy sports teams, you are transferring data via TCP/IP using HTTP.

TCP/IP

The TCP/IP protocol is really a stack of protocols, consisting of several
different protocols on both Layers 3 and 4 of the OSI model. These protocols
include TCP, IP, ARP, DHCP, ICMP, and many others.

Transmission Control Protocol (TCP, RFC 793) is a Layer 4 protocol that
is commonly used because it provides an efficient method of transparent,
reliable, and bi-directional communication between devices. Bi-directional
communication means that data can be transmitted and received simul-
taneously from a single host.

All of the various benefits and features of TCP are made possible through
different types of TCP packets and flags. In the next several paragraphs we
will look at these different types of packets and what they do.

Internet Protocol (IP, RFC 791) is the Layer 3 protocol that provides the
addressing system that allows communication on a network. IP is a connection-
less protocol, which means that it requires the functionality of TCP bundled
with it to ensure the reliability of transmitted data.

The traffic in the capture file begins with the establishment of a TCP/IP
session, followed by the request and transmission of HTTP data and the
termination of the session. Stepping through this simple communication
between client and server is going to help us in understanding how TCP
and IP work.

Establishing the Session

Before you can transfer data to or from another computer, the sender and
receiver need to complete a TCP handshake. A TCP handshake is a three-step
process whereby the transmitting computer (the client, in this example)
establishes a connection with the destination computer (the server). You
can see the handshake in the first three packets of our capture file, and it is
detailed visually in Figure 6-5.

Now is a very good time to go ahead and establish our client and server
computers. The client computer is shown in the first packet with IP address
145.254.160.237. The server computer is shown in the first packet with
IP address 65.208.228.223.

Common Pro tocols 65

Figure 6-5: The three-step TCP handshake process

The SYN Packet

To begin the handshake process, the client sends a SYN packet to the server;
this packet is designed to establish synchronization with the server, which
ensures that the client and server keep their communications in the proper
order. The SYN packet carries with it a 32-bit sequence number, located in
the header of a TCP packet.

To view a packet’s TCP information, including its sequence number,
expand the TCP section under Wireshark’s Packet Details pane. (You will
refer to this section often because it contains a variety of useful information,
including the source and destination ports used, the sequence number, the
type of TCP packet, and other TCP-specific options.) Notice in the capture
file that the first SYN packet’s sequence number is 0, as shown in Figure 6-6.

Figure 6-6: The Packet Details pane gives you all the information you need about this
packet.

NOTE In Wireshark, TCP sequence numbers are treated as “relative” by default. Wireshark
adjusts the first sequence number in a communication stream so that it is 0 rather than
its true value. This is done so that the sequence numbers are easier to follow.

SYN/ACK, the Server Response

The next step in the handshake process is the response from the server. Once
the server receives the initial SYN packet from the client, it reads the packet’s
sequence number and uses that number in the packet it returns. The response
packet is called a SYN/ACK packet, and it is seen in packet 2 of the example file.

ACK Packet
Seq # 222222222
Ack # 111111112

SYN Packet
Seq # 111111111
Ack # 0

SYN Packet
Seq # 111111112
Ack # 222222223Client Server

66 Chapter 6

The ACK portion of the packet acknowledges the SYN packet—in other
words, it tells the client computer that the server received the SYN packet.
It does this by incrementing the sequence number sent in the original SYN
packet by one and using it as the acknowledgment number in the ACK packet.
When the client receives this acknowledgment number containing the original
SYN sequence number, it knows that the server can receive its communication,
and vice versa. The purpose of SYN portion of the SYN/ACK is the same as in
the original SYN packet: It is used to transmit a sequence number that the
client system can use to acknowledge receipt.

The Final ACK Packet

Finally, the client sends an ACK packet to the server. This packet tells the
server that the client received its SYN/ACK packet. As with step two of
the process, the sequence number is incremented by one and sent as an
acknowledgment number to the server. Once this last ACK packet is
received, communication can begin.

Beginning the Flow of Data

Once the handshake has been established, all packets sent in this particular
session between client and server will use sequence numbers to make sure
they stay in order. However, from now on, these packets will be incremented
by the size of the data frame being transmitted, rather than by one. (To learn
more about how TCP packets stay organized, have a look at RFC 793.)

HTTP Request and Transmission
Once the communication session has been established, it’s time for the actual
request and transmission of the web page you are trying to view. This involves
both HTTP and TCP.

The process begins in packet 4, our first HTTP packet, which asks the
server to transmit the web page to the client. Go ahead and expand the HTTP
section of this packet in the Packet Details pane to view the protocol-specific
information related to this request (as shown in Figure 6-7).

Figure 6-7: The Packet Details pane shows all you would ever want to know about the
request.

As you can see, this packet invokes a GET command (Request Method: GET)
for the web page /download.html on the domain www.ethereal.com (Request
URI: /download.html and Host: www.ethereal.com). You will also notice other

Common Pro tocols 67

information that may be useful, such as character encoding (Accept-Charset:
ISO-8859-1), and the referrer location (Referrer: http://www.ethereal.com/
development.html \r \n).

Once HTTP has made this initial GET request, TCP takes over the data
transfer process. Throughout the rest of the capture file you will see this pro-
cess repeated: HTTP will request data from the server, and the server will then
use TCP to transport this data back to the client. The server lets the client
know the request was valid by sending an HTTP OK message before trans-
mitting the data. (You can see the corresponding GET and OK packets in
the example file at packets 4 and 38, shown in Figure 6-8.)

Figure 6-8: Packets 4 and 38 show a corresponding GET and OK.

Terminating the Session

When there is no more data to be sent over an established connection, the
connection can be terminated in a manner very similar to that of the initial
TCP handshake. Rather than using SYN and ACK packets however, this
process uses FIN and ACK packets, as shown in Figure 6-9.

Figure 6-9: The FIN/ACK handshake process gracefully terminates
a TCP connection.

Client Server

FIN/ACK
Packet

ACK Packet

FIN/ACK
Packet

ACK Packet

68 Chapter 6

When the server finishes transmitting data, it sends a FIN/ACK packet to
the client, as shown in Figure 6-10. The FIN packet is designed to gracefully
close a connection.

Figure 6-10: You can see the details of a FIN/ACK packet in the Packet Details pane.

The client responds to the FIN packet with an ACK packet that uses
the sequence numbers and incrementation rules that it finds in the FIN
packet. This closes communication from the server’s end of things. While
the server can still receive data from the client at this point, it will no
longer transmit data.

To complete the process, the client must initiate this same process again
with the server. The FIN/ACK process must be initiated and acknowledged
by both the client and server.

For example, in packet 40, the server sends a FIN/ACK packet to the
client, and the client responds with its ACK packet in packet 41. Following
that, the client sends its own FIN/ACK packet to the server, and the server
closes the connection with an ACK packet, packet 43, as shown in Figure 6-11.

Figure 6-11: The FIN/ACK process as seen from the Packet List pane

Domain Name System

dns.pcap

The Domain Name System (DNS, RFC 1034) translates one form of address
into another—specifically, it translates DNS addresses, such as www.google.com
or MARKETING-PC1, into their corresponding IP addresses. Some form of
address translation is a requirement, since Layer 3 of the OSI model can
only locate a computer if it has its IP address.

DNS translation is a very simple process, and it gets the job done in most
cases using only two packets. The first packet is a request to your network’s
local DNS server that asks, What is the IP address of www.google.com? The second
packet is the response from that DNS server, saying that www.google.com
resides on a server with an IP address of XX.XX.XX.XXX.

Let’s take a look at DNS in action (see Figure 6-12). Notice in the first
packet of the file that a DNS packet from source 192.168.0.114 is requesting
the IP address of http://www.chrissanders.org from destination 205.152.37.23.
The destination IP address receives the query and responds with packet 2,

Common Pro tocols 69

which contains the IP address of the requested website, 208.113.140.24.
Once this process is complete, Layer 3 can take over and complete its TCP
handshake so that data transfer can begin.

Figure 6-12: DNS only requires two packets—a request and a response.

NOTE As you examine the actual sample capture file, you will see several different DNS
queries taking place. Often a single web page will invoke a number of queries because
the information needs to be retrieved from several servers. Try creating a display filter
to show only the DNS traffic and see if you can determine how many different DNS
queries take place in this file.

File Transfer Protocol

ftp.pcap

The File Transfer Protocol (FTP, RFC 959) is a Layer 7 protocol that is used to
transfer data between a server and client. Operating on ports 20 and 21, FTP
is one of the most commonly used file transfer utilities. Because FTP is a
client/server protocol, all communication in the capture file involves back-
and-forth traffic between a client computer and a server computer. As with
all TCP processes, FTP begins with a standard TCP handshake, as shown with
packet 1 and in Figure 6-13 below.

Figure 6-13: The TCP handshake is prevalent in various communication types.

Once the handshake process completes, the server sends a welcome
message to the client. This message identifies the server as an FTP server and
tells the client that the server is ready to accept its login credentials, as shown
in Figure 6-14.

Figure 6-14: The beginning of the FTP communication process

Through the next several packets, the client sends a username (csanders)
and a password (echo) to the server, and the server acknowledges them
(Figure 6-15).

Figure 6-15: The username and password of the FTP user being transmitted to the server

70 Chapter 6

This communication is summed up nicely in the Info column of the
Packet List pane, though that window only gives a very brief summary of the
packet contents. If you want to dig a little deeper, you can expand the FTP
section in the Packet Details pane.

Notice that encryption is not used in our example, so the FTP password
can be seen clearly in the capture file in packet 7 (Figure 6-16).

Figure 6-16: The password of the user csanders can be seen clearly in this packet.

CWD Command

As you can see, packet 15 shows a CWD command being sent from the client
to the server. CWD stands for change working directory, and this command is
invoked every time you tell an FTP client to move to a different directory on
the server.

Notice in this example that the CWD command includes requests to
change the working directory to /, which is the root directory of the FTP
server. When you first log into an FTP server, the CWD command is issued
to change to the root directory, /. Once the server receives this CWD
command, it changes to the root directory and tells the client that / is
now the current working directory.

A connecting client uses a list of
commands to interact with an FTP server.
These range from viewing the contents of a
directory, traversing a directory, download-
ing or deleting a file, and so on. (For a
complete list of the available commands
visible in an FTP packet, see RFC 959.)
Let’s look at a few FTP commands used in
our example file, beginning with packet 15,
shown in Figure 6-17.

Figure 6-17: Packet 15 shows the
PWD command being issued to the
server.

SIZE Command

The next command is the SIZE
command, shown in Figure 6-18.
This command reports the size
(in bytes) of a particular file, and
it is always sent with a filename.

Figure 6-18: The SIZE command
being sent to the server

Common Pro tocols 71

the RETR command to the server, requesting download of the file Music.mp3.
Once the server gets this request, it begins sending the data to the client.

NOTE The packets labeled FTP-DATA are ones containing a file that is being downloaded
from or uploaded to the server.

Telnet Protocol

telnet.pcap

The telnet protocol (RFC 854) is an unsecured, text-based way for a server and
client to communicate. It is often used to remotely administer servers, switches,
routers, and other network hardware devices.

In this capture file you will see an example of a client computer
(192.168.0.2) connecting to a telnet server (192.168.0.1). As you begin to
step through the data being transmitted, notice that everything is sent in
clear text. For this reason, the telnet protocol should not be used to
transmit sensitive data.

NOTE You can be more secure by forgoing telnet and using SSH instead.

Each telnet session uses several unique options to specify communication
rates and data transfer modes, which must be synchronized between client

Notice in packet 25 that the
client sends the SIZE command
to the server to request the size
of the file Music.mp3. Packet 26
(Figure 6-19) shows the server’s
response, which is the file size of
4,980,924 bytes.

Figure 6-19: The packet returned from the
issued SIZE command

RETR Command

The RETR (retrieve) command,
shown in Figure 6-20, is used by
the client to request the down-
load of a file from the server.
In packet 32, the client sends

Figure 6-20: The RETR command is used
to download a file from the FTP server.

What type of communi-
cation is occurring in this
exchange between server and
client? Starting at the top, we
can immediately draw several
conclusions. The first several
packets confirm that we are
definitely seeing telnet traffic,
because telnet-specific settings
are being communicated
between these two devices,
as shown in Figure 6-21.

Figure 6-21: The first packets of the capture file
are telnet packets between server and client.

72 Chapter 6

and server before communication can begin. These options account for the
first 30 or so packets in the sample capture file.

The first interesting packet is number 27, which identifies the server as
an OpenBSD server. Packet 29 presents a login prompt to the client, and in
packet 31 you can see that the username fake is sent back to the server. Packet
36 requests a password from the client, which is answered in packet 38 with
the password user, which is shown in Figure 6-22. You can now see just how
insecure telnet is. This username and password combination could very well
be the administrative password to one of the most important servers on your
network, and it would still be shown in clear text that is readable by anyone
with a packet sniffer and little bit of knowledge.

Figure 6-22: A password transmitted via telnet can be seen as clear as day.

The rest of the capture file shows the client using the established telnet
session to ping several websites. You can observe this data and exactly how it
is transferred by looking at the telnet section in the Packet Details pane.

MSN Messenger Service

msnms.pcap

You may find that you need to analyze the traffic of an instant message con-
versation for several reasons. We explored one possible scenario in Chapter 5
when we suspected an employee of giving away company financial informa-
tion over messenger software. There are several popular instant messaging
applications, and while each one utilizes its own protocol, there are certain
similarities in each. Here we’ll focus specifically on traffic from the MSN
Messenger Service (MSNMS). Let’s see if we can’t catch some employees
in the act.

NOTE Some organizations have policies that prevent the use of messaging software, and if so,
even seeing the MSNMS protocol in a capture file can set off alarms.

The capture file begins like any TCP communication—with a simple
handshake between two clients, as shown in Figure 6-23.

Figure 6-23: The TCP handshake begins the communication process.

Common Pro tocols 73

Following this handshake, the first MSNMS packet is sent from
192.168.0.114 to a server residing outside of your local network (Figure 6-24).

Figure 6-24: This packet shows a client inside our network communicating with a server from the outside world.

This packet is being sent from a computer on your network to a
remote Microsoft server in order to establish a handshake that prepares
for communication. These initial packets are marked as USR packets, as
seen under the MSNMS section of the packet in the Packet Details pane.
You can seen the email address of the person initiating the conversation
(tesla_brian@hotmail.com) in these initial packets (Figure 6-25).

Figure 6-25: The user tesla_brian@hotmail.com
appears to be initiating a conversation, as seen
in the packet details of packet 5.

The next two packets are marked CAL packets, as shown in Figure 6-26.
CAL packets are sent from the computer inside your network to an MSN
server in order to establish communication with another MSNMS user.

Figure 6-26: CAL packets are used here to establish communication between MSNMS users.

As you can see in packet 7, the corresponding MSNMS user has the
email address tesla_thomas@hotmail.com (Figure 6-27).

Figure 6-27: This CAL packet lets us see the email address of the user initiating communication.

The server now acknowledges that it has received CAL packet 7 in
packet 8 (Figure 6-28).

Figure 6-28: Packet 8 shows acknowledgment of packet 7.

74 Chapter 6

Packet 9 is the last packet to be sent to fully establish communication.
As shown in Figure 6-29, packet 9 is a JOI packet sent from the remote MSN
servers, indicating that the other member of the party (tesla_thomas@
hotmail.com, in this case) has successfully joined a session and can establish
communication.

Figure 6-29: Packet 9 is a JOI packet indicating that the users are now sharing a session.

The balance of the capture file contains only MSG packets, which are
simply messages sent from one endpoint to another—in this case between
Brian and Thomas.

The first thing that probably comes to mind when you think of this
concept is, Can I really see what they are saying?! Well, as scary as it is, the
answer is yes. Everything. By simply right-clicking one of the MSG packets
and selecting Follow TCP Stream (as you learned to do in Chapter 5) you
can see the full conversation between Brian and Thomas (Figure 6-30).
This might make you be a little more careful about what you say in instant
messenger conversations while on the job!

Figure 6-30: We’ll see who’s a jerk! You’re fired!

Common Pro tocols 75

Internet Control Message Protocol

icmp.pcap

Internet Control Message Protocol (ICMP) is a part of the IP protocol; I like to call
it a utility protocol because it’s used for troubleshooting other protocols. If you
have ever used the ping utility, you have used the ICMP protocol.

Let’s see what common ICMP traffic looks like. The included capture file
only contains eight packets. There are two separate pings to two separate
hosts. Let’s look at the packet details of packet 1, shown in Figure 6-31.

Common sense tells us that if a computer sends an echo request, it
should receive an echo reply, and that’s just what we see in the capture file.
Packet 2 is transmitted back from the remote computer and is marked as
ICMP type 0, an echo (ping) reply.

A standard ping from a Windows command line pings a host four
times. You can see the ping process in the capture file and in Figure 6-32,
as well. The first ping destination, 192.168.0.1, receives and replies to four
pings. Following this, another ping is initiated to 72.14.207.99 (http://
www.google.com), which also receives and replies to four pings.

Figure 6-32: Ping, reply, ping, reply, ping, reply—you get the picture, right?

Final Thoughts

The goal of this chapter has been to introduce you to using Wireshark to
analyze capture files and to use those capture files to show you how some
common protocols work. Although we’ve only briefly covered some of the
more advanced protocols, I highly recommend reading their RFCs and
studying them more in depth. As the book continues on to various sce-
narios, we will be building on the basic concepts you’ve learned here.

If you expand the ICMP section,
you will see what little there is to an
ICMP packet. The first packet is
labeled as type 8, an echo (ping)
request. Every ICMP packet has a
numerical type associated with it,
which determines how the packet is
to be handled by the destination
machine. (RFC 792 lists all the
different types of ICMP packets.)

Figure 6-31: The first ping packet, packet 1

