
C O M M O N L O W E R - L A Y E R
P R O T O C O L S

Whether troubleshooting latency issues,
identifying malfunctioning applications, or

zeroing in on security threats in order to be able
to spot abnormal traffic, you must first understand nor-
mal traffic. In the next couple of chapters, you’ll learn
how normal network traffic works at the packet level.
We’ll look at the most common protocols, including the workhorses TCP,
UDP, and IP, and more commonly used application-layer protocols such as
HTTP, DHCP, and DNS. Each protocol section has at least one associated
capture file, which you can download and work with directly. This chapter
will specifically focus on the lower-layer protocols found in reference to layers 1
through 4 of the OSI model.

These are arguably the most important chapters in this book. Skipping
the discussion would be like cooking Sunday supper without cornbread. Even
if you already have a good grasp of how each protocol functions, give these
chapters at least a quick read in order to review the packet structure of each.

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

86 Chapter 6

Address Resolution Protocol

Both logical and physical addresses are used for communication on a network.
The use of logical addresses allows for communication between multiple
networks and indirectly connected devices. The use of physical addresses
facilitates communication on a single network segment for devices that are
directly connected to each other with a switch. In most cases, these two types
of addressing must work together in order for communication to occur.

Consider a scenario where you wish to communicate with a device on
your network. This device may be a server of some sort or just another work-
station you need to share files with. The application you are using to initiate
the communication is already aware of the IP address of the remote host (via
DNS, covered in Chapter 7), meaning the system should have all it needs to
build the layer 3 through 7 information of the packet it wants to transmit.
The only piece of information it needs at this point is the layer 2 data link
data containing the MAC address of the target host.

MAC addresses are needed because a switch that interconnects devices
on a network uses a Content Addressable Memory (CAM) table, which lists the
MAC addresses of all devices plugged into each of its ports. When the switch
receives traffic destined for a particular MAC address, it uses this table to
know through which port to send the traffic. If the destination MAC address
is unknown, the transmitting device will first check for the address in its cache;
if it is not there, then it must be resolved through additional communication
on the network.

The resolution process that TCP/IP networking (with IPv4) uses to resolve
an IP address to a MAC address is called the Address Resolution Protocol (ARP),
which is defined in RFC 826. The ARP resolution process uses only two packets:
an ARP request and an ARP response (see Figure 6-1).

NOTE An RFC, or Request for Comments, is the official document that defines the implemen-
tation standards for protocols. You can search for RFC documentation at the RFC
Editor home page, http://www.rfc-editor.org/.

The transmitting computer sends out an ARP request that basically asks,
“Howdy everybody, my IP address is XX.XX.XX.XX, and my MAC address is
XX:XX:XX:XX:XX:XX. I need to send something to whoever has the IP address
XX.XX.XX.XX, but I don’t know its hardware address. Will whoever has this
IP address please respond back with your MAC address?”

This packet is broadcast to every device on the network segment.
Any device that does not have this IP address simply discards the packet.
The device that does have this IP address sends an ARP reply with an
answer like, “Hey, transmitting device, I’m who you are looking for with
the IP address of XX.XX.XX.XX. My MAC address is XX:XX:XX:XX:XX:XX.”

Once this resolution process is completed, the transmitting device updates
its cache with the MAC-to-IP address association of this device, and it can
begin sending data.

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 87

Figure 6-1: The ARP resolution process

NOTE You can view the ARP table of a Windows host by typing arp –a from a command
prompt.

Seeing this process in action will help you to understand how it works.
But before we look at some examples, let’s examine the ARP packet header.

The ARP Header
As shown in Figure 6-2, the ARP header includes the following fields:

Hardware Type The layer 2 type used. In most cases, this is Ethernet
(type 1).

Protocol Type The higher-layer protocol for which the ARP request is
being used.

Hardware Address Length The length (in octets/bytes) of the hard-
ware address in use (6 for Ethernet).

Protocol Address Length The length (in octets/bytes) of the logical
address of the specified protocol type.

Operation The function of the ARP packet: either 1 for a request or 2
for a reply.

Sender Hardware Address The hardware address of the sender.

Sender Protocol Address The sender’s upper-layer protocol address.

Target Hardware Address The intended receiver’s hardware address
(zeroed in ARP requests).

Target Protocol Address The intended receiver’s upper-layer protocol
address.

ARP Request

ARP Response

Source IP: 192.168.0.101
Source: MAC: f2:f2:f2:f2:f2:f2
Target IP: 192.168.0.1
Target MAC: 00:00:00:00:00:00

Source IP: 192.168.0.1
Source: MAC: 02:f2:02:f2:02:f2
Target IP: 192.168.0.101
Target MAC: f2:f2:f2:f2:f2:f2

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

88 Chapter 6

Figure 6-2: The ARP packet structure

Now open the file arp_resolution.pcap to see this resolution process in
action. We’ll focus on each packet individually as we walk through this process.

Packet 1: ARP Request
arp_resolution
.pcap

The first packet is the ARP request, as shown in Figure 6-3. We can confirm
that this packet is a true broadcast packet by examining the Ethernet header
in Wireshark’s Packet Details pane. The packet’s destination address is
ff:ff:ff:ff:ff:ff . This is the Ethernet broadcast address, and anything sent to
it will be broadcast to all devices on the current network segment. The source
address of this packet in the Ethernet header is listed as our MAC address .

Figure 6-3: An ARP request packet

Address Resolution Protocol
Bit

Offset 0–7 8–15

Hardware Type0

16

32

48

64

80

96

112

128

144

160

176

192

208

Protocol Type

Hardware Address Length Protocol Address Length

Operation

Sender Hardware Address (1st 16 Bits)

Sender Hardware Address (2nd 16 Bits)

Sender Hardware Address (3rd 16 Bits)

Sender Protocol Address (1st 16 Bits)

Sender Protocol Address (2nd 16 Bits)

Target Hardware Address (1st 16 Bits)

Target Hardware Address (2nd 16 Bits)

Target Hardware Address (3rd 16 Bits)

Target Protocol Address (1st 16 Bits)

Target Protocol Address (2nd 16 Bits)

�
�

�

�
�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 89

Given this structure, we can discern that this is indeed an ARP request on
an Ethernet network using IP. The sender’s IP address (192.168.0.114) and
MAC address (00:16:ce:6e:8b:24) are listed , as is the IP address of the tar-
get (192.168.0.1) . The MAC address of the target—the information we are
trying to get—is unknown, so the target MAC is listed as 00:00:00:00:00:00 .

Packet 2: ARP Response
In our response to the initial request (see Figure 6-4), the Ethernet header
now has a destination address of the source MAC address from the first packet.
The ARP header looks similar to that of the ARP request, with a few changes:

 The packet’s operation code (opcode) is now 0x0002 , indicating a
reply rather than a request.

 The addressing information is reversed—the sender MAC address and
IP address are now the target MAC address and IP address .

 Most important, all of the information is present, meaning we now have
the MAC address (00:13:46:0b:22:ba) of our host at 192.168.0.1.

Figure 6-4: An ARP reply packet

Gratuitous ARP
arp_gratuitous
.pcap

Where I come from, when something is done “gratuitously,” that usually carries a
negative connotation. A gratuitous ARP, however, is actually a good thing.

In many cases, a device’s IP address can change. When this happens,
the IP-to-MAC address mappings that hosts on the network have in their
caches will be invalid. To prevent this from causing communication errors,
a gratuitous ARP packet is transmitted on the network to force any device
that receives it to update its cache with the new IP-to-MAC address map-
ping (see Figure 6-5).

�

�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

90 Chapter 6

Figure 6-5: The gratuitous ARP process

A few different scenarios can spawn a gratuitous ARP packet. One of
the most common is the changing of an IP address. Open the capture file
arp_gratuitous.pcap, and you’ll see this in action. This file contains only a single
packet (see Figure 6-6) because that’s all that’s involved in gratuitous ARP.

Figure 6-6: A gratuitous ARP packet

Examining the Ethernet header, you can see that this packet is sent as a
broadcast so that all hosts on the network receive it . The ARP header looks
like an ARP request, except that the sender IP address and the target IP
address are the same. When received by other hosts on the network, this
packet will cause them to update their ARP tables with the new IP-to-MAC
address association. Because this ARP packet is unsolicited but results in a
client updating its ARP cache, the packet is considered gratuitous.

You will notice gratuitous ARP packets in a few different situations. As
mentioned, changing a device’s IP address will generate one. Also, some
operating systems will perform a gratuitous ARP on startup. Additionally, you
may notice gratuitous ARP packets on systems that use them for load-balancing
of incoming traffic.

Source IP: 192.168.0.101
Source: MAC: f2:f2:f2:f2:f2:f2
Target IP: 192.168.0.101
Target MAC: 00:00:00:00:00:00:

�

�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 91

Internet Protocol

The primary purpose of protocols at layer 3 of the OSI model is to allow for
communication between networks. As you just saw, MAC addresses are used
for communication on a single network at layer 2. In much the same fashion,
layer 3 is responsible for addresses for internetwork communication. A few
protocols can do this, but the most common is the Internet Protocol (IP). Here,
we’ll examine IP version 4 (IPv4), which is defined in RFC 791.

In order to understand the functionality of IPv4, you need to know how
traffic flows between networks. IPv4 is the workhorse of the communication
process and is ultimately responsible for carrying data between devices,
regardless of where the communication endpoints are located.

A simple network in which all devices are connected via hubs or switches
is called a local area network (LAN). When you want to connect two LANs
together, you can do so with a router. Complex networks can consist of
thousands of LANs connected through thousands of routers worldwide.
The Internet itself is a collection of millions of LANs and routers.

IP Addresses
IP addresses are 32-bit addresses used to uniquely identify devices connected
to a network. It is a bit much to expect someone to remember a sequence of
ones and zeros that is 32 characters long, so IP addresses are written in dotted-
quad notation.

In dotted-quad notation, each of the four sets of ones and zeros that
make up an IP address is converted to base 10 and represented as a number
between 0 and 255 in the format A.B.C.D (see Figure 6-7). For example,
consider the IP address 11000000 10101000 00000000 00000001. This value
is obviously a bit much to remember or notate. Fortunately, using dotted-
quad notation, we can represent it as 192.168.0.1.

IP addresses are divided into four distinct parts for a reason. An IP address
consists of two parts: a network address and a host address. The network address
identifies the LAN the device is connected to, and the host address identifies
the device itself on that network. The determination of which part of the IP
address belongs to the network or host address is not always the same. This
is actually determined by another set of addressing information called the
network mask (netmask), sometimes also referred to as a subnet mask.

Figure 6-7: Dotted-quad IPv4 address notation

192.168.0.1

192 168 0 1

11000000 10101000 00000000 00000001

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

92 Chapter 6

The netmask identifies which portion of the IP address belongs to the
network address and which part belongs to the host address. The netmask
number is also 32 bits long, and every bit that is set to a 1 identifies the portion
of the IP address that is reserved for the network address. The remaining bits
set to 0 identify the host address.

For example, consider the IP address 10.10.1.22, represented in binary
as 00001010 00001010 00000001 00010110. In order to determine the alloca-
tion of each section of the IP address, we can apply our netmask. In this case,
our netmask is 11111111 11111111 00000000 00000000. This means that
the first half of the IP address is reserved for the network address (10.10 or
00001010 00001010) and the last half of the IP address identifies the individual
host on this network (.1.22 or 00000001 00010110), as shown in Figure 6-8.

Figure 6-8: The netmask determines the allocation of the bits in an IP address.

Netmasks can also be written in dotted-quad notation. For example, the
netmask 11111111 11111111 00000000 00000000 is written as 255.255.0.0.

IP addresses and netmasks are commonly written in Classless Inter-Domain
Routing (CIDR) notation for shorthand. In this form, an IP address is written in
full, followed by a forward slash (/) and the number of bits that represent the
network portion of the IP address. For example, an IP address of 10.10.1.22 and
a netmask of 255.255.0.0 would be written in CIDR notation as 10.10.1.22/16.

The IPv4 Header
The source and destination IP addresses are the crucial components of the
IPv4 packet header, but that’s not all of the IP information you will find
within a packet. The IP header is actually quite complex compared with the
ARP packet we just examined. It includes a lot of extra functionality that
helps IP do its job.

As shown in Figure 6-9, the IPv4 header has the following fields:

Version The version of IP being used

Header Length The length of the IP header

Type of Service A precedence flag and type of service flag, which are
used by routers to prioritize traffic

Total Length The length of the IP header and the data included in the
packet

Identification A unique identification number used to identify a packet
or sequence of fragmented packets

10.10.1.22

255.255.0.0

00001010 00001010 00000001 00010110

11111111 11111111 00000000 00000000
10.10.1.22

Network Host

Network Host

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 93

Flags Used to identify whether or not a packet is part of a sequence of
fragmented packets

Fragment Offset If a packet is a fragment, the value of this field is used
to reassemble the packets in the correct order.

Time to Live Defines the lifetime of the packet, measured in hops/sec-
onds through routers

Protocol Used to identify the type of packet coming next in the
sequence of packets

Header Checksum An error-detection mechanism used to verify the
contents of the IP header are not damaged or corrupted

Source IP Address The IP address of the host that sent the packet

Destination IP Address The IP address of the packet’s destination

Options Reserved for additional IP options. It includes options for
source routing and timestamps.

Data The actual data being transmitted with IP

Figure 6-9: The IPv4 packet structure

Time to Live
ip_ttl_source.pcap
ip_ttl_dest.pcap

The Time to Live (TTL) value defines a period of time that can be elapsed or
a maximum number of routers a packet can traverse before the packet is
discarded. A TTL is defined when a packet is created, and generally is dec-
remented by 1 every time the packet is forwarded by a router. For example,
if a packet has a TTL of 2, the first router it reaches will decrement the TTL
to 1 and forward it to the second router. This router will then decrement
the TTL to 0, and if the final destination of the packet is not on that net-
work, the packet will be discarded (see Figure 6-10). Since the TTL value is
technically time-based, a very busy router could decrement the TTL value
by more than 1, but generally, it’s safe to assume that one routing device
will decrement a TTL by only 1 most of the time.

Internet Protocol
Bit

Offset 0–3 4–7 8–15 16–18 19–31

Version HDR
Length Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options

Data

0

32

64

96

128

160
160 or
192+

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

94 Chapter 6

Figure 6-10: The TTL of a packet decreases every time it traverses a router.

Why is the TTL value important? Typically, we are concerned about the
lifetime of a packet only in terms of the time that it takes to travel from its
source to its destination. However, consider a packet that must travel to a
host across the Internet while traversing dozens of routers. At some point in
that packet’s path, it could encounter a misconfigured router and lose the
path to its final destination. In such a case, the router could do a number
of things, one of which could result in the packet being forwarded around a
network in a never-ending loop.

If you have any programming background at all, you know that a loop
that never ends can cause all sorts of issues, typically resulting in a program
or an entire operating system crashing. Theoretically, the same thing could
occur with packets on a network. The packets would keep looping between
routers. As the number of looping packets increased, the available bandwidth
on the network would deplete until a DoS condition occurred. To prevent
this potential problem, the TTL field of the IP header was created.

Let’s look at an example of this in Wireshark. The file ip_ttl_source.pcap
contains two ICMP packets. ICMP (discussed later in this chapter) utilizes IP
to deliver packets, as we can see by expanding the IP header section in the
Packet Details pane (see Figure 6-11).

Figure 6-11: The IP header of the source packet

TTL 1

TTL 1

TTL 1

TTL 2

TTL 2TTL 3

�
�

�

�

�
�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 95

You can see that the version of IP being used is version 4 , the IP header
length is 20 bytes , the total length of the header and payload is 60 bytes ,
and the value of the TTL field is 128 .

The primary purpose of an ICMP ping is to test communication between
devices. Data is sent from one host to another as a request, and the receiving
host should send that data back as a reply. In this file, we have one device
with the address of 10.10.0.3 sending an ICMP request to a device with the
address 192.168.0.128 . This initial capture file was created at the source
host, 10.10.0.3.

Now open the file ip_ttl_dest.pcap. In this file, the data was captured at the
destination host, 192.168.0.128. Expand the IP header of the first packet in
this capture to examine its TTL value (see Figure 6-12).

Figure 6-12: The IP header tells us that the TTL has been lowered by 1.

You should immediately notice that the TTL value is 127 , one less
than the original TTL of 128. Without even knowing the architecture of the
network, we can conclude that these two devices are separated by one router
and that the passage through that router reduced the TTL value by one.

IP Fragmentation
ip_frag_source
.pcap

Packet fragmentation is a feature of IP that permits reliable delivery of data across
varying types of networks by splitting a data stream into smaller fragments.

The fragmentation of a packet is based on the maximum transmission unit
(MTU) size of the layer 2 data link protocol in use and the configuration of the
devices using these layer 2 protocols. In most cases, the layer 2 data link pro-
tocol in use is Ethernet. Ethernet has a default MTU of 1500, which means
that the maximum packet size that can be transmitted over an Ethernet net-
work is 1,500 bytes (not including the 14-byte Ethernet header itself).

NOTE Although there are standard MTU settings, the MTU of a device can be reconfigured
manually in most cases. An MTU setting is assigned on a per-interface basis and can be
modified on Windows and Linux systems, as well as on the interfaces of managed routers.

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

96 Chapter 6

When a device prepares to transmit an IP packet, it determines whether
it must fragment the packets by comparing the packet’s data size to the MTU
of the network interface from which the packet will be transmitted. If the
data size is greater than the MTU, the packet will be fragmented. Fragment-
ing a packet involves the following steps:

1. The device splits the data into the number of packets required for
successful data transmission.

2. The Total Length field of each IP header is set to the segment size of
each fragment.

3. The More Fragments flag is set to 1 on all packets in the data stream,
except for the last one.

4. The Fragment Offset field is set in the IP header of the fragments.

5. The packets are transmitted.

The file ip_frag_source.pcap was taken from a computer with the address
10.10.0.3, transmitting a ping request to a device with address 192.168.0.128.
Notice that the Info column of the Packet List pane lists two fragmented IP
packets, followed by the ICMP (ping) request.

Begin by examining the IP header of packet 1 (see Figure 6-13).
You can see that this packet is part of a fragment based on the More

Fragments and Fragment Offset fields. Packets that are fragments either will
have a positive Fragment Offset value or will have the More Fragments flag
set. In the first packet, the More Fragments flag is set , indicating that the
receiving device should expect to receive another packet in this sequence.
The Fragment Offset is set to 0 , indicating this packet is the first in a series
of fragments.

Figure 6-13: More fragments and fragment offset values can indicate a fragmented packet.

�
�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 97

The IP header of the second packet (see Figure 6-14) also has the More
Fragments flag set , but in this case, the fragment offset value is 1480 .
This is indicative of the 1,500-byte MTU, minus 20 bytes for the IP header.

Figure 6-14: The Fragment Offset value increases based on the size of the packets.

The third packet (see Figure 6-15) does not have the More Fragments
flag set , which marks it as the last fragment in the data stream, and the
Fragment Offset is set to 2960 , the result of 1480 + (1500 – 20). These frag-
ments can all be identified as part of the same series of data because they
have the same values in the Identification field of the IP header .

Figure 6-15: More Fragments is not set, indicating the last fragment.

�
�

�
�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

98 Chapter 6

Transmission Control Protocol

The ultimate goal of the Transmission Control Protocol (TCP) is to provide end-
to-end reliability for the delivery of data. TCP, which is defined in RFC 793,
operates at layer 4 of the OSI model. It handles data sequencing and error
recovery, and ultimately ensures that data gets where it is supposed to go. A
lot of commonly used application-layer protocols rely on TCP and IP to deliver
packets to their final destination.

The TCP Header
TCP provides a great deal of functionality, as reflected in the complexity of
its header. As shown in Figure 6-16, the following are the TCP header fields:

Source Port The port used to transmit the packet.

Destination Port The port to which the packet will be transmitted.

Sequence Number The number used to identify a TCP segment. This
field is used to ensure that parts of a data stream are not missing.

Acknowledgment Number The sequence number that is to be
expected in the next packet from the other device taking part in the
communication.

Flags The URG, ACK, PSH, RST, SYN, and FIN flags for identifying the
type of TCP packet being transmitted.

Window Size The size of the TCP receiver buffer in bytes.

Checksum Used to ensure the contents of the TCP header and data are
intact upon arrival.

Urgent Pointer If the URG flag is set, this field is examined for addi-
tional instructions for where the CPU should begin reading the data
within the packet.

Options Various optional fields that can be specified in a TCP packet.

Figure 6-16: The TCP header

Transmission Control Protocol
Bit

Offset 0–3 4–7 8–15 16–31

Data
Offset

Acknowledgment Number

Urgent Pointer

Flags

Sequence Number

Window SizeReserved

Checksum

Source Port Destination Port

Options

0

32

64

96

128

160

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer P ro tocols 99

TCP Ports
tcp_ports.pcap All TCP communication takes place using source and destination ports,

which can be found in every TCP header. A port is like the jack on an old
telephone switchboard. A switchboard operator would monitor a board of
lights and plugs. When a light lit up, he would connect with the caller, ask
who she wanted to talk to, and then connect her to her destination by plug-
ging in a cable. Every call needed to have a source port (the caller) and a
destination port (the recipient). TCP ports work in much the same fashion.

In order to transmit data to a particular application on a remote server
or device, a TCP packet must know the port the remote service is listening
on. If you try to access an application on a port other than the one config-
ured for use, the communication will fail.

The source port in this sequence is not incredibly important and can be
selected randomly. The remote server will simply determine the port to com-
municate with from the original packet it is sent (see Figure 6-17).

Figure 6-17: TCP uses ports to transmit data.

There are 65,535 ports available for use when communicating with TCP.
We typically divide these into two groups:

 The standard port group is from 1 through 1023 (ignoring 0 because it is
reserved). Particular services use standard ports, which generally lie within
the standard port grouping.

 The ephemeral port group is from 1024 through 65535 (although some
operating systems have different definitions for this). Only one service
can communicate on a port at any given time, so modern operating sys-
tems select source ports randomly in an effort to make communications
unique. These source ports are typically located in the ephemeral range.

Let’s examine a couple of different TCP packets and identify the port
numbers they are using by opening the file tcp_ports.pcap. In this file, we have
the HTTP communication of a client browsing to two websites. As mentioned
previously, HTTP uses TCP for communication, which makes it a great example
of standard TCP traffic.

In the first packet in this file (see Figure 6-18), the first two values represent
the packet’s source port and destination port. This packet is being sent from
172.16.16.128 to 212.58.226.142. The source port is 2826 , an ephemeral

Client

Source Port 1024/Dest Port 80

Client

Source Port 80/Dest Port 1024

Source Port 3221/Dest Port 25

Source Port 25/Dest Port 3221

Web Server
Listening on Port 80

Email Server
Listening on Port 25

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

100 Chapter 6

port. (Remember that source ports are chosen at random by the operating
system, although they can increment from that random selection.) The desti-
nation port is a standard port, port 80 , the standard port used for web
servers using HTTP.

Figure 6-18: The source and destination ports can be found in the TCP header.

Notice that Wireshark labels these ports as slc-systemlog (2826) and http
(80). Wireshark maintains a list of ports and their most common uses. Although
these are primarily standard ports, many ephemeral ports have commonly
used services associated with them. The labeling of these ports can be quite
confusing, so it’s typically best to disable it by turning off transport name res-
olution. To do so, choose EditPreferencesName Resolution, and then
remove the check mark next to Enable Transport Name Resolution. If you
wish to leave this functionality enabled but want to change how Wireshark
identifies a certain port, you can do so by modifying the Services file located
in the Wireshark program directory, which is based on the Internet Assigned
Numbers Authority (IANA) common ports listing.

The second packet is being sent back from 212.58.226.142 to 172.16.16.128
(see Figure 6-19). As with the IP addresses, the source and destination ports
are now also switched .

Figure 6-19: The source and destination port numbers are switched for reverse communication.

�
�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 101

All TCP-based communication works the same way: a random source
port is chosen to communicate to a known destination port. Once this initial
packet is sent, the remote device communicates with the source device using
the established ports.

There is one more communication stream included in this sample cap-
ture file. See if you can locate the port numbers it uses for communication.

NOTE As we progress through this book, you will learn more about the ports associated with
common protocols and services. Eventually, you will be able to profile services and
devices by the ports they use. For a thorough list of common ports, see http://www
.iana.org/assignments/port-numbers/.

The TCP Three-Way Handshake
tcp_handshake
.pcap

All TCP-based communication must begin with a handshake between two
hosts. This handshake process serves a few different purposes:

 It allows the transmitting host to ensure that the destination host is up
and able to communicate.

 It lets the transmitting host check that it is listening on the port on which
the source is attempting to communicate.

 It allows the transmitting host to send its starting sequence number to
the recipient so that both hosts can keep the stream of packets in proper
sequence.

The TCP handshake occurs in three separate steps, as shown in Figure 6-20.
In the first step, the device that wants to communicate (host A) sends a TCP
packet to its target (host B). This initial packet contains no data other than
the lower-layer protocol headers. The TCP header in this packet has the SYN
flag set and includes the initial sequence number and maximum segment
size (MSS) that will be used for the communication process. Host B responds
to this packet by sending a similar packet with the SYN and ACK flags set,
along with its initial sequence number. Finally, host A sends one last packet
to host B with only the ACK flag set. Once this process is completed, both
devices should have all of the information they need to begin communicat-
ing properly.

Figure 6-20: The TCP three-way handshake

SYN

SYN/ACK

ACK
Host A Host B

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

102 Chapter 6

NOTE TCP packets are often referred to by the flags they have set. For example, rather than
refer to a packet as a TCP packet with the SYN flag set, we call that packet a SYN
packet. As such, the packets used in the TCP handshake process are referred to as SYN,
SYN/ACK, and ACK.

To see this process in action, open tcp_handshake.pcap. Wireshark includes
a feature that replaces the sequence numbers of TCP packets with relative
numbers for easier analysis. For our purposes, we’ll disable this feature in
order to see the actual sequence numbers. To disable it, choose Edit
Preferences, expand the Protocols heading, and choose TCP. In the win-
dow, uncheck the box next to Relative Sequence Numbers and Window Scal-
ing, and then click OK.

The first packet in this capture represents our initial SYN packet (see
Figure 6-21). The packet is transmitted from 172.16.16.128 on port 2826 to
212.58.226.142 on port 80. We can see here that the sequence number trans-
mitted is 3691127924 .

Figure 6-21: The initial SYN packet

The second packet in the handshake is the SYN/ACK response from
212.58.226.142 (see Figure 6-22). This packet also contains this host’s
initial sequence number (233779340) and an acknowledgment number
(3691127925) . The acknowledgment number shown here is one more
than the sequence number included in the previous packet, because this
field is used to specify the next sequence number the host expects to
receive.

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 103

Figure 6-22: The SYN/ACK response

The final packet is the ACK packet sent from 172.16.16.128 (see
Figure 6-23). This packet, as expected, contains the sequence number
3691127925 as defined in the previous packet’s Acknowledgment
Number field.

Figure 6-23: The final ACK

A handshake occurs before every TCP communication sequence. When
sorting through a busy capture file in search of the beginning of a communi-
cation sequence, the sequence of SYN-SYN/ACK-ACK is a great marker.

TCP Teardown
tcp_teardown
.pcap

Most greetings eventually have a good-bye, and in the case of TCP, every
handshake has a teardown. The TCP teardown is used to gracefully end a con-
nection between two devices after they have finished communicating. This
process involves four packets, and it utilizes the FIN flag to signify the end of
a connection.

�
�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

104 Chapter 6

In a teardown sequence, host A tells host B that it is finished commu-
nicating by sending a TCP packet with the FIN and ACK flags set. Host B
responds with an ACK packet, and transmits its own FIN/ACK packet.
Host A responds with an ACK packet, ending the communication process.
This process is illustrated in Figure 6-24.

Figure 6-24: The TCP teardown process

To view this process in Wireshark, open the file tcp_teardown.pcap. Begin-
ning with the first packet in the sequence, (see Figure 6-25), you can see that
the device at 67.228.110.120 initiates the teardown sequence by sending a
packet with the FIN and ACK flags set .

Figure 6-25: The FIN/ACK initiates the teardown process.

Once this packet is sent, 172.16.16.128 responds with an ACK packet to
acknowledge receipt of the first packet, and it sends a FIN/ACK packet. The
process is complete when 67.228.110.120 sends a final ACK. At this point, the
communication between the two devices ends, and they must complete a
new TCP handshake in order to begin communicating again.

Host A Host B

FIN/ACK

FIN/ACK

ACK

ACK

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 105

TCP Resets
tcp_
refuseconnection
.pcap

In an ideal world, every connection would end gracefully with a TCP tear-
down. In reality, connections often end abruptly. For example, this may
occur due to a potential attacker performing a port scan or simply a miscon-
figured host. In these cases, a TCP packet with the RST flag set is used. The
RST flag is used to indicate a connection was closed abruptly or to refuse a
connection attempt.

The file tcp_refuseconnection.pcap displays an example of network traffic
that includes a RST packet. The first packet in this file is from the host at
192.168.100.138, which is attempting to communicate with 192.168.100.1
on port 80. What this host doesn’t know is that 192.168.100.1 isn’t listening on
port 80 because it is a Cisco router, with no web interface configured, mean-
ing that no service is listening for connections on port 80. In response to this
attempted communication, 192.168.100.1 sends a packet to 192.168.100.138,
telling it that communication won’t be possible over port 80. Figure 6-26
shows the abrupt end to this attempted communication in the TCP header
of the second packet. The RST packet contains nothing other than RST and
ACK flags , and no further communication follows.

An RST packet ends communication whether it arrives at the beginning
of an attempted communication sequence, as in this example, or is sent in
the middle of the communication between hosts.

Figure 6-26: The RST and ACK flags signify the end of communication.

User Datagram Protocol

The User Datagram Protocol (UDP) is the other layer 4 protocol commonly used
on modern networks. While TCP is designed for reliable data delivery with
built-in error checking, UDP aims to provide speedy transmission. For this
reason, UDP is a best-effort service, commonly referred to as a connectionless

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

106 Chapter 6

protocol. A connectionless protocol does not formally establish and terminate
a connection between hosts, unlike TCP with its handshake and teardown
processes.

With a connectionless protocol, which doesn’t provide reliable services,
it would seem that UDP traffic would be flaky at best. That would be true,
except that the protocols that rely on UDP typically have their own built-in
reliability services, or use certain features of ICMP to make the connection
somewhat more reliable. For example, the application-layer protocols DNS
and DHCP, which are highly dependent on the speed of packet transmission
across a network, use UDP as their transport layer protocol, but they handle
error checking and retransmission timers themselves.

The UDP Header
udp_dnsrequest
.pcap

The UDP header is much smaller and simpler than the TCP header. As shown
in Figure 6-27, the following are the UDP header fields:

Source Port The port used to transmit the packet

Destination Port The port to which the packet will be transmitted

Packet Length The length of the packet in bytes

Checksum Used to ensure that the contents of the UDP header and
data are intact upon arrival

Figure 6-27: The UDP header

The file udp_dnsrequest.pcap contains one packet. This packet represents
a DNS request, which uses UDP. When you expand the packet’s UDP header,
you’ll see four fields (see Figure 6-28).

Figure 6-28: The contents of a UDP packet are very simple.

User Datagram Protocol
Bit

Offset 0–15 16–31

Packet Length Checksum

Source Port Destination Port0

32

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 107

The key point to remember is that UDP does not care about reliable
delivery. Therefore, any application that uses UDP must take special steps
to ensure reliable delivery, if it is necessary.

Internet Control Message Protocol

Internet Control Message Protocol (ICMP) is the utility protocol of TCP/IP,
responsible for providing information regarding the availability of devices,
services, or routes on a TCP/IP network. Most network troubleshooting
techniques and tools center around common ICMP message types. ICMP
is defined in RFC 792.

The ICMP Header
ICMP is part of IP, and it relies on IP to transmit its messages. ICMP contains
a relatively small header that changes depending on its purpose. As shown in
Figure 6-29, the ICMP header contains the following fields:

Type The type or classification of the ICMP message, based on the RFC
specification

Code The subclassification of the ICMP message, based on the RFC
specification

Checksum Used to ensure that the contents of the ICMP header and
data are intact upon arrival

Variable A portion that depends on the Type and Code fields

Figure 6-29: The ICMP header

ICMP Types and Messages
As noted, the structure of an ICMP packet depends on its purpose, as defined
by the values in the Type and Code fields.

You might consider the ICMP Type field as the packet’s classification
and the Code field as its subclass. For example, a Type field value of 3 indi-
cates “Destination Unreachable.” While this information alone might not be
enough to troubleshoot a problem, if that packet were to also specify a Code
field value of 3, indicating “Port Unreachable,” you could conclude that there
is an issue with the port with which you are attempting to communicate.

NOTE For a full list of available ICMP types and codes, see http://www.iana.org/
assignments/icmp-parameters.

Internet Control Message Protocol
Bit

Offset 0–15 16–31

Checksum0

32

Type Code

Variable

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

108 Chapter 6

Echo Requests and Responses
icmp_echo.pcap ICMP’s biggest claim to fame is thanks to the ping utility. Ping is used to test

for connectivity to a device. Most information technology (IT) professionals
are familiar with ping.

To use ping, enter ping <ip address> at the command prompt, replacing
<ip address> with the actual IP address of a device on your network. If the tar-
get device is turned on, your computer has a communication route to it, and
there is no firewall blocking that communication, you should see replies to
your ping command.

The example in Figure 6-30 shows four successful replies that display
their size, RTT, and TTL used. The Windows utility also provides a summary
detailing how many packets were sent, received, and lost. If communication
fails, you should see a message telling you why.

Figure 6-30: The ping command being used to test connectivity

Basically, the ping command sends one packet at a time to a device and
listens for a reply to determine if there is connectivity to that device, as shown
in Figure 6-31.

Figure 6-31: The ping command involves only two steps.

NOTE Although ping has long been the bread and butter of IT, its results can be a bit deceiv-
ing as host-based firewalls are deployed. Many of today’s firewalls limit the ability of a
device to respond to ICMP packets. This is great for security, because potential attackers
using ping to determine if a host is accessible might be deterred, but troubleshooting is
also made more difficult—it can be frustrating to ping a device to test for connectivity
and not receive a reply when you know you can communicate with that device.

The ping utility in action is a great example of simple ICMP communica-
tion. The packets in the file icmp_echo.pcap demonstrate what happens when
you run ping.

Echo/Ping Request

Echo/Ping Response

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 109

The first packet (see Figure 6-32) shows that host 192.168.100.138 is
sending a packet to 192.168.100.1 . When you expand the ICMP portion
of this packet, you can determine the ICMP packet type by looking at the
Type and Code fields. In this case, the packet is type 8 , code 0 , indicat-
ing an echo request. (Wireshark should tell you what the type/code being
displayed actually is.) This echo (ping) request is the first half of the equa-
tion. It is a simple ICMP packet, sent using IP, that contains a small amount
of data. Along with the type and code designations and the checksum, we
also have a sequence number that is used to pair requests with replies, and a
random text string in the variable portion of the ICMP packet.

NOTE The terms echo and ping are often used interchangeably, but just remember that ping
is actually the name of a tool. The ping tool is used to send ICMP echo request packets.

Figure 6-32: The ICMP echo request packet

The second packet in this sequence is the reply to our request (see Fig-
ure 6-33). The ICMP portion of the packet is type 0 , code 0 , indicating
that this is an echo reply. Because the sequence number in the second
packet matches that of the first , we know that this echo reply matches
the echo request in the previous packet. This reply packet also contains the
same 32-byte string of data that was transmitted with the initial request .
Once this second packet has been received by 192.168.100.138, ping will
report success (see Figure 6-30, shown earlier).

Figure 6-33: The ICMP echo reply packet

�

�
�

�
�

�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

110 Chapter 6

Note that you can use variations of ping to increase the size of the data
padding, which forces packets to be fragmented for various types of network
troubleshooting. This may be required when you’re troubleshooting networks
that require a smaller fragment size.

NOTE The random text used in an ICMP echo request can be of great interest to a potential
attacker. Attackers can use the information in this padding to profile the operating
system used on a device. Additionally, attackers can place small bits of data in this
field as a method of covert communication.

Traceroute
icmp_traceroute
.pcap

The traceroute utility is used to identify the path from one device to another.
On a simple network, a path may go through only a single router or no router
at all. On a complex network, however, a packet may need to go through dozens
of routers to reach its final destination, which is why it’s crucial to be able to
trace the exact path a packet takes from one destination to another in order
to troubleshoot communication.

By using ICMP (with a little help from IP), traceroute can map the path
packets take. For example, the first packet in the file icmp_traceroute.pcap is
pretty similar to the echo request we looked at in the previous section (see
Figure 6-34).

Figure 6-34: An ICMP echo request packet with a TLL value of 1

At first glance, this packet appears to be a simple echo request from
192.168.100.138 to 4.2.2.1 , and everything in the ICMP portion of the
packet is identical to the formatting of an echo request packet. However,
when you expand the IP header of this packet, you’ll notice one odd value:
The packet’s TTL value is set to 1 , which means that the packet will
be dropped at the first router that it hits. Because the destination 4.2.2.1

�

�

�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

Common Lower - Layer Pro tocols 111

address is an Internet address, we know that there must be at least one router
between our source and destination devices, so there is no way this packet
will reach its destination. That’s good for us, because traceroute relies on the
fact that this packet will make it to only the first router it traverses.

The second packet is, as expected, a reply from the first router we reached
along the path to our destination (see Figure 6-35). This packet reached this
device at 192.168.100.1, its TTL was decremented to 0, and the packet could
not be transmitted further, so the router replied with an ICMP response. This
packet’s type 11 , code 0 tells us that the destination was unreachable
because the packet’s TTL was exceeded during transit.

Figure 6-35: An ICMP response from the first router along the path

This ICMP packet is sometimes called a double-headed packet, because the
tail end of its ICMP portion contains a copy of the IP header and ICMP
data that was sent in the original echo request. This information can prove
to be very useful for troubleshooting.

This process of sending packets with incremented TTL values occurs
two more times before we get to packet 7. Here, you see the same thing you
saw in the first packet, except that this time, the TTL value in the IP header
is set to 2, which ensures the packet will make it to the second hop router
before it is dropped. As expected, we receive a reply from the next hop
router, 12.180.241.1, with the same ICMP destination unreachable and TTL
exceeded messages. This process continues with the TTL value increasing by
one until the destination 4.2.2.1 is reached.

To sum up, this traceroute process has communicated with each router
along the path, building a map of the route to the destination. This map is
shown in Figure 6-36.

�
�

�
�

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

112 Chapter 6

NOTE The discussion here on traceroute is generally Windows-focused because it uses ICMP
exclusively. The traceroute utility on Linux is a bit more versatile and can utilize other
protocols in order to perform route path tracing.

Figure 6-36: A sample output from the traceroute utility

As you’ll see throughout this book, ICMP has many different functions.
We’ll use ICMP frequently as we analyze more scenarios.

This chapter has introduced you to a few of the most important protocols
you will examine in the process of packet analysis. IP, TCP, UDP, and ICMP
are at the foundation of all network communications, and they are critical to
just about every daily task you perform. In the next chapter, we will look at a
grouping of common application-layer protocols.

Practical Packet Analysis, 2nd Edition
© 2011 by Chris Sanders

