
I N D E X

Symbols & Numbers
&body keyword, 344
* (asterisk), in variable names, 23
board-scale variable, 406
dice-scale variable, 403
from-tile variable, 411
num-players variable, 418
print-circle variable, 111
standard-output variable, 364
top-offset variable, 403
@ (at), in control sequence

parameters, 223
` (backquote), 344

for enabling switching from data
to code mode, 73

\ (backslash), for escaped
characters, 35

: (colon), for keyword parameters,
81, 122

:@ flag, for columns in tables, 230–231
:if-exists keyword parameter, 243
:initial-value keyword

parameter, 168
:junk-allowed parameter, 260
:pretty parameter, 117
:radix parameter, 260
:test keyword parameter, 141

to use equal, 204
. (dot), for representing cons cells, 39
" (double quotes), for strings, 35
= (equal sign) function, 65
(hash mark), for array, 154
#\newline, 89
#\space, 89
#\tab, 89
#' (function) operator, 75
#S prefix, for structures, 164
< (less-than) function, with sort, 170

() parentheses
for calling commands and

functions, 22, 24
empty lists, 25

symmetry of nil and, 49–52
for list of declared variables

in let, 28
for organizing code into lists, 33

' (single quote), as data indicator, 37
~ (tilde), for control sequences, 223
~& control sequence, 227
~< control sequence, 229
~> control sequence, 229
~:; control sequence, 232
~{ control sequence, 231
~} control sequence, 231
~$ control sequence, 223, 226
~% control sequence, 227–228
~a control sequence, 223–224
~b control sequence, 225
~d control sequence, 225
~f control sequence, 226
~t control sequence, 228–229
~x control sequence, 225
| (vertical pipe), for case-sensitive

symbols, 89
404 error page, 265

A
ab-get-ratings-max function, 395–396
ab-get-ratings-min function, 395–396
ab-rate-position function, 397
academic research, 8
accum function, 459
accumulator, 332
~a control sequence, 223–224
across in loop macro, 201, 320

Land of Lisp
© 2010 by Conrad Barski, M.D.

466 INDEX

add-cops function, 140, 141–142
add function, predicates in, 171
add-new-dice function, 316–317,

333–334, 425
add-passing-move function, 312,

384–385
add-plants function, 204, 212
add-two function, 299–300
add-widget function, 296–297, 298
AI (artificial intelligence), 8
alists. See association lists (alists)
Allegro Common Lisp, 18
alpha beta pruning, 393–400

and chance nodes, 423
alphanumericp function, 117
always in loop macro, 201
Amazon S3, 160
anaphoric macros, 347
and in loop macro, 201
and operator, 58
announce-winner function, 320
ANSI Common Lisp (CL), 15–16,

17–18. See also Common
Lisp (CL)

append function, 75, 76, 143
append in loop macro, 201
apply function, 76
apt-get install clisp, 18
ARC assembly, 5
Arc Lisp dialect, 17, 359, 459
aref function, 154

and performance, 156
arrayp function, 170
arrays, 153–157

vs. lists, 156–157
for monsters, 173
sequence functions for, 166
sum function for, 169

artificial intelligence (AI), 8
ASCII code, 260

code-char function to convert, 308
ash (arithmetic shift) function, 25–26
as in loop macro, 201
assemblers, 5
assembly languages, 5
assoc function, 71, 83, 112
association lists (alists), 111–112, 141

attributes for print-tag, 359
of known nodes, 146
nested, 142

for nodes in city, 142
for scenery description, 70–71
web request parameters in, 261
writing to file, 243

asterisk (*), in variable names, 23
at (@), in control sequence

parameters, 223
at-loc-p function, 78
attacking-moves function, 313–314,

385, 419
Attack of the Robots! game, 233–234
Autocode, 5

B
backquote (`), 344

for enabling switching from data
to code mode, 73

backslash (\), for escaped
characters, 35

~b control sequence, 225
being in loop macro, 200
below in loop macro, 196
bidirectional stream, 247
bigger function, 27
binary, number display as, 225
binary search, 23, 26
blocking operation, 247
board-array function, 308
board-attack-fail function, 419–420
board-attack function, 315–316
board-scale variable, 406
&body keyword, 344
Boolean values, manipulating, 58
branching, 56–57

with case form, 57–58
breaking out of loop, 198
brevity of code, 459
brightness function, 361
bug fighters

Clojure Lisp, 461
comic book, 429–463
Common Lisp Object System

(CLOS), 451
continuations, 454
domain-specific language, 450
exception handling, 444–445
functional programming, 441
generic setters, 447
lazy evaluation, 462
macros, 443

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 467

bugs, functional programming to
reduce, 301

by in loop macro, 201

C
C++ language, 9, 10, 32

#define directive, 340
cached results, clearing, 398
cache misses, performance

impact, 160
cadadar function, 42
cadadr function, 42
cadr function, 40–41
calc-pt function, 403
capitalized text, converting all

caps to, 97
capturing console output, 123
car function, 40–41, 75
case form, branching with, 57–58
case-insensitivity, of symbols, 33
case of text, adjusting, 97
case-sensitive symbols, 89
cdr function, 40, 143–144
cells, retrieving item from first slot, 40
centered columns, 230
chain of cons cells, 40, 108
chance nodes, in game tree, 418–420
characterp function, 170
characters

comparison, 65
literal, 89
for padding numbers, 225

char-downcase function, 99
char-equal function, 65
charge function, 151
char-upcase function, 99
chosen-tile parameter, 407
Church, Alonzo, 293
circle function, 362
circular lists, 110–111
CISC (complex instruction set

computer), 8
city.dot.png picture, 145
CL (Common Lisp), 15, 17–18. See

also Lisp
basics, 441
tail call optimization support, 333

client, for socket connection, 246

CLISP, 18–19
installing, 18
printing of circular lists, 111
shutting down, 19
starting, 19

Clojure Lisp, 17, 461
and lazy evaluation, 377, 462
lazy sequences, 380

CLOS (Common Lisp Object
System), 166, 451

closingp predicate, 358
closing tag in XML, 358
closures, 326–328, 379
Clozure CL, 18
cl-sockets, 245
clusters, finding in Dice of Doom,

424–425
cmd variable, 95
CMUCL, 18
COBOL, 8
code

brevity, 459
vs. data, 35–37
symmetry between data and,

91–92
code-char function, 260, 308
code composition, 298
code mode, 35, 36

backquote (`) for enabling
switching to, 73

coerce function, 98, 260
collect clause in loop, 137, 198
colon (:), for keyword parameters,

81, 122
color

for dice, 407
manipulating, 361

columns in table, centered, 230
comic book, 4

bug fighters, 429–463
on functional programming,

269–287
command-line interface, 85

printing to screen, 86–87
commands, adding to permitted

list, 368
Common Lisp (CL), 15, 17–18. See

also Lisp
basics, 441
tail call optimization support, 333

Land of Lisp
© 2010 by Conrad Barski, M.D.

468 INDEX

Common Lisp HyperSpec, 170
on control sequences, 233

Common Lisp Object System
(CLOS), 166, 451

communication, with other network
computers, 245

comparison, 62–65
eql for numbers and

characters, 65
of symbols, 63

compiler, 5
versions of function for, 172

complex instruction set computer
(CISC), 8

computation, delayed, 124
computer, as game opponent,

321–326
concatenate command, 95
cond command, 56, 208
conditions, tricks with, 58–62
Congestion City, 131, 132. See also

Grand Theft Wumpus
game

building final edges, 139–142
defining edges, 135–142
drawing map, 145–149

from partial knowledge,
146–148

nodes for, 142–144
preventing islands, 137–139
walking around town, 148–149

connect-all-islands function, 139
connect-edge-list function, 140
connect-with-bridges function, 139
Conrad’s Rule of Thumb for

Comparing Stuff, 62–63
cons cells, 37, 38, 107

in nested lists, 42
conses, eq for comparing, 63
cons function, 38–40
consing, 39
console output, capturing, 123
console streams, 238
consp function, 170
constants, for game board

dimensions, 402
continuations, 454
control sequences, 222–223

Common Lisp HyperSpec on, 233
for formatting numbers, 225–226

iterating through lists with,
231–232

for new lines, 227–228
control string parameter, for format

function, 222–223
copy-list function, 211
copy-structure function, problems

from, 211
count function, 167
counting from starting point to

ending point, 197
count in loop macro, 201
currencies, formatting, 226

D
data

vs. code, 35–37
generic process for handling,

166–172
symmetry between code and, 91–92
tree-like, 113

data mode, 35, 37
backquote (`) for enabling

switching to, 73
data structures, self-referential, 111
~d control sequence, 225
dead animals, in evolving

environment, 212
dead monsters, checking for, 179
Debian-based Linux machine,

CLISP on, 18
debugging

in functional programming, 441
string streams and, 250–251

decf function, 180
decimal number, value

displayed as, 225
decimal point, and number type, 34
declaration, of function, 29
decode-param function, 259–260
default, code mode as, 36
define-condition function, 254–255
defmacro command, 341, 342–344
defmethod command, 171–172, 180
defparameter command, 23, 24, 135
defstruct command, 163, 164, 172,

173, 180, 208
for brigand, 185–186
for hydra, 183

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 469

to include monster type fields, 181
for slime mold, 185

defun command, 25, 27
defvar command, 24
delayed computation, 124
deprecated function, 117
depth-first search, 394
describe-location function, 71
describe-objects function, 78
describe-obj function, 78
describe-path function, 72–73
describe-paths function, 73–74, 75, 77
destination parameter, for format

function, 222
Dewdney, A.K., “Simulated evolution;

wherein bugs learn to hunt
bacteria,” 202

Dice of Doom game, 303–336
attacking, 315–316
calculating attacking moves,

313–314
calculating passing moves,

312–313
computer opponent, 321–326

game loop with AI player,
324–325

minimax algorithm, 323
minimax algorithm code,

323–324
decoupling rules from rest of

game, 309–310
finding neighbors, 314–315
game board, 307–309

3-by-3 sample game, 334–336
5-by-5, 398–400
constants for dimensions, 402
using SVG format, 402–408

generating game tree, 311–312
new game-tree function, 317–318
performance improvement,

326–336
playing against another human,

318–321
input from human players, 319
main loop, 318
state of game information,

318–319
winner determination,

319–320

playing first human vs. computer
game, 325–326

reinforcements, 316–317
rules, 304
sample game, 304–306
tail call optimization, 333–334
version 1, 306–321

global variables, 306–307
version 2, 384–386

alpha beta pruning, 393–400
lazy lists for game tree, 384
score-board function, 390
starting game on 4-by-4

board, 386
winning by a lot vs. winning by

a little, 389–393
version 3 (web-based), 401

announcing winner, 410
drawing die, 403–405
drawing tile, 405–406
game board, 406–408
game board in HTML, 412
handling computer player, 412
handling human player,

410–411
initializing new game, 410
playing, 413–414
web server interface, 408–412

version 4
calling dice rolling code from

game engine, 420–421
improving reinforcement

rules, 423–425
increasing number of players,

417–418
rolling dice, 418–423
updaing AI, 422–423

dice_of_doom.v2.lisp file, 402
dice-scale variable, 403
digit-char-p function, 116
digraph command (Graphviz), 115
direct-edges function, 138
directed graph, 124
dirty code, 294, 296
dividing by zero, 53
division function, 34
DOCTYPE declaration, 258
dod-request-handler function, 408–409
domain, explained, 355–356

Land of Lisp
© 2010 by Conrad Barski, M.D.

470 INDEX

domain of function, 292
domain-specific language (DSL), 231,

355, 450. See also macros
dot (.), for representing cons cells, 39
dot->png function, 123
dotimes function, 161, 175
DOT information generation,

115–120
edges conversion, 119
labels for graph nodes, 117–118
node identifiers conversion,

116–117
for nodes, 118
turning DOT file into picture,

120–123
dot-name function, 116
do token, 197, 200
dotted lists, 108–109
double quotes ("), for strings, 35
downfrom in loop macro, 201
downto in loop macro, 201
draw-board function, 309
draw-board-svg function, 407
draw-city function, 145
draw-die-svg function, 403
draw-dod-page function, 409, 412
draw-known-city function, 147, 149
draw-tile-svg function, 405
draw-world function, 212–213
DSL (domain-specific language), 231,

355, 450. See also macros
dunk function, 368–369, 371
dynamic variable, 24
dynamic website, 265–267

testing request handler, 265–266

E
each in loop macro, 200
earmuffs, 23
eat function, 209
edge-pair function, 136, 139
edges, 72

of Congestion City, 135–142
converting to descriptions, 74–76
converting to DOT format, 119
erasing duplicate, 126
replacing list with hash table, 162

edges->dot function, 119
edges-to-alist function, 139, 141

EDSAC Initial Orders, 5
else in loop macro, 201
Emacs Lisp, 17
empty lists (), 39

as false value, 50–51
other expressions as disguises

for, 51–52
end in loop macro, 201
energy, in plants, 203
eq function, 33, 57, 63
eql function, 65, 331
equal function, 63, 331
equalp function, 65, 330
= (equal sign) function, 65
error command, 254
escaped characters, in strings, 35
eval command, 92

danger of, 101
improving, 96

every function, 167, 179
evolution function, 213–214
evolving environment game, 202–218

animals, 205–212
anatomy, 205–207
eating process, 209
energy, 206
motion, 207–208
properties, 206
reproduction, 210–212
starting point, 207
tracking genes, 206
turn function, 208–209

bimodal distribution in, 217–218
drawing world, 212–213
plants

energy, 203
growth, 204

simulating day, 212
starting simulation, 214–218
user interface, 213–214

exception handling, 95, 253–256,
444–445

custom conditions, 254–255
intercepting conditions, 255
resources protected against

unexpected conditions,
255–256

signaling condition, 254
for web server, 265

exponent, 36

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 471

expressive language, 10
expt function, 34, 36

F
false value, empty list () as, 50–51
~f control sequence, 226
files

streams to write and read, 242–243
writing information to, 121

file streams, 238
finally in loop macro, 200
find-empty-node function, 144–145
find-if function, 61, 167
find-island function, 139
find-islands function, 139
Firefox, for Dice of Doom game,

413–414
Firefox 3.7 alpha, for SVG

support, 402
first-class values, functions as, 104
flet function, 29

for local function definition, 95
floating-point numbers, 34

control sequences for
formatting, 226

force command, 378–380
for in loop macro, 196, 201
format function, 193. See also printing

anatomy, 221–223
control string parameter, 222–223
destination parameter, 222
and text justification, 228

formatting numbers, control
sequences for, 225–226

forms, 36
nested, 36

FORTRAN, 5
freeing of variables, 327
fresh-line command, 227
from in loop macro, 201
from-tile variable, 411
funcall function, 178, 327
functional programming, 54, 71, 441

anatomy of program, 295–298
benefits, 301–302
comic book, 269–287
higher-order, 105
and loops, 315
problems from, 375–376

reduce function, 352–353
side effects, 294, 300–301
using, 299–300
what it is, 292–295

function operator, shorthand for, 75
functionp function, 170
function pipeline, 309
functions

calling in Lisp, 22
call to itself, 30
comprehensive list of

sequence, 170
creating with lambda, 103–105
deprecated, 117
generic, 116
higher-order, 75
names available in defined

functions, 29–30
namespaces for, 75
nullary, 120
parentheses for, 22
sending string streams to, 249

G
game-action macro, 369–371
game board

AI adjustments for larger, 387–400
for Dice of Doom, 307–309

3-by-3 sample game, 334–336
5-by-5, 398–400
constants for dimensions, 402
using SVG format, 402–408

game-eval function
approved list of commands for, 101
limiting commands called, 96

game-loop function, 174–175
game-print function, 96–99
game-read function, 94–95
game-repl function, 93–94, 365
games. See also Dice of Doom game;

evolving environment game;
Grand Theft Wumpus
game; Orc Battle game;
Wizard’s Adventure Game

Attack of the Robots! game,
233–234

Guess-My-Number, 21–23
loading code from REPL, 365–366
winning by a lot vs. winning by a

little, 389–393

Land of Lisp
© 2010 by Conrad Barski, M.D.

472 INDEX

game tree
branches hidden in clouds,

376–377
chance nodes in, 418–420
generating, 311–312
memoizing, 330
trimming, 387–389

game-tree function, 311, 317–318
garbage collection, 9, 327
Garret, Ron, 257
gen-board function, 308
generalized reference, 155
generic functions, 116

creating with type predicates,
170–172

generic setters, 154–156, 447
gensym function, 349
get-connected function, 138, 161, 162,

424, 425
get-connected-hash function, 163
get-content-params function, 263
gethash function, 155, 158, 160, 162
get-header function, 262

testing, with string stream,
262–263

get-ratings function, 324, 391, 422
new versions, 395

GET request, 257
request parameters for, 259

global functions, defining, 25–28
global variables

changing value, 27
defining, 23–24
in look function, 80
macros and, 370
for player and monsters, 173–174
setting inside conditional

branch, 54
Google BigTable, 160
Graham, Paul, 17

Arc Lisp dialect, 359
Grand Theft Wumpus game. See also

Congestion City
basics, 131–135
clues, 142
drawing map, 145–149

from partial knowledge,
146–148

with hash tables, 161–163
initializing new game, 144–145
playing game, 149–151
police roadblocks, 139

graph->dot function, 124
graphs

creating, 114–124
creating picture of, 123–124
directed, 124
labels for nodes, 117–118
undirected, 124–127
visualizing, 114

graph utilities, loading, 135
graph-util.lisp file, 127
Graphviz, 114–124
Graphviz DOT file

edges conversion, 119
for graph drawing library,

115–120
labels for graph nodes, 117–118
node identifiers conversion,

116–117
for nodes, 118
turning DOT file into picture,

120–123
guess-my-number function, 25–27
Guess-My-Number game, 21–23
Guile Scheme, 17

H
hackers

and dangerous commands, 101
and read command, 262

handle-computer function, 324, 388,
397, 412, 421

handle-direction function, 148
handle-human function, 319,

385–386, 421
handle-new-place function, 149
handler-case function, 254
hash collisions, 160
hash-edges function, 162
hash-key in loop macro, 200
hash-keys in loop macro, 200
hash mark (#), for array, 154
hash-table-p function, 170

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 473

hash tables, 155, 157–163
Grand Theft Wumpus game

with, 161–163
inefficiency for small tables, 160
performance, 160–161
for plants, 204
returning multiple values,

159–160
hash-value in loop macro, 200
hash-values in loop macro, 200
Haskell, 17, 296

and lazy evaluation, 377
have function, 367
health meter, for monsters, 180
hello-request-handler function, 265
heuristics, 389
hexadecimal, number display as, 225
Hickey, Rich, 17
hidden state, 299
hierarchical data, 113
higher-order functions, 75
higher-order programming, 105,

298–300
homoiconic programming code, 91
HTML5 standard, 402
HTML code, 97

embedding SVG pictures, 402
page skeleton, 265
tag macro to generate, 360–361

html tags, 258
HTTP (Hypertext Transfer

Protocol), 256
http-char function, 260
HTTP escape codes, 259
http.lisp file, 257
Hughes, John, “Why Functional

Programming Matters,” 310
Hunt the Wumpus, 129
hyperlinks, in SVG image, 361
Hypertext Transfer Protocol

(HTTP), 256

I
if command, 50, 52–54
:if-exists keyword parameter, 243
if in loop macro, 201
imperative code, 294

code composition with, 298–299

imperative game engine, 310
implicit progn, 55
incf function, 179
indentation of code, 28
infinite loop

getting out of, 93
preventing, 111

infinity, positive and negative, 397
Information Processing Language, 5
in in loop macro, 201
initially in loop macro, 200
:initial-value keyword parameter, 168
init-monsters function, 178
input-stream-p command, 240
input streams, 238, 240–241
installing CLISP, 18
instruction set of processor, 5
integers, 34

control sequences for
formatting, 225

intern command, 262
interpreter, 5

versions of function for, 172
intersection function, 141
into in loop macro, 201
inventory function, 83
IP address, in socket address, 245
islands, preventing, 137–139
isomorphic item, 63
iterating

across sequence, 167–170
through lists, with format control

sequences, 231–232
through list values, 197

J
Java language, 10
Jones, Simon Peyton, 300
:junk-allowed parameter, 260
justified text, 228–231

K
key/value pair

returning for alist, 112
storage, 160

keyword parameter, 117–118, 122
for find function, 81

Land of Lisp
© 2010 by Conrad Barski, M.D.

474 INDEX

known-city.dot-png file, 148
known-city-edges function, 146–147
known-city-nodes function, 146

L
labels, for graph nodes, 117–118
labels function, 29–30, 78

for local function definition, 95
lambda calculus, 6, 105, 293
lambda function, 178, 179, 255, 314

and closures, 326–327
importance, 105
purpose, 103–105

largest-cluster-size function, 424–425
launching website, 266–267
lazy-car command, 380
lazy-cdr command, 380
lazy command, 378–380
lazy-cons command, 380
lazy evaluation, 376–384, 423, 462
lazy-find-if function, 383
lazy game tree, 310
lazy lists

adjusting AI functions to use,
387–400

converting between regular lists
and, 381–382

converting to regular lists, 382
for Dice of Doom game tree, 384
library for, 380
mapping and searching, 383–384

lazy-mapcan function, 383, 385
lazy-mapcar function, 383
lazy-nil function, 381, 385
lazy-nth function, 383
lazy-null function, 381
legality of game move, 148
legal-tiles parameter, 407
length function, 166–167
less-than (<) function, with sort, 170
let* command, 140
let command, 28, 123, 140, 327, 340

progn command and, 344
lexical variable, 123, 327–328
library, for lazy lists, 380
limit-tree-depth function, 388,

395, 423
line breaks, 28

linking data pieces, cons function for,
38–40

Lisp. See also Common Lisp (CL)
basic etiquette, 24–25
dialects, 15–18

for scripting, 17
features, 2–3
Guess-My-Number game, 21–23
origins, 4–9
source of power, 10–11
technologies supporting, comic

book, 429–463
up-and-coming dialects, 17
valid expression example, 3

LispWorks, 18
list function, 41, 359
list-length function, 167
listp function, 170, 240
lists, 33, 37–42. See also association list

(alist); lazy lists
vs. arrays, 156–157
association, 111–112
benefits of using, 71
calculating length, 51
checking for membership, 60–61
circular, 110–111
control sequences for iterating

through, 231–232
dotted, 108–109
empty, 39

as false value, 50–51
other expressions as disguises

for, 51–52
functions, 38–42
iterating through with loop, 197
joining multiple into one, 76
macro for splitting, 346–347
nested, 41–42
of objects, 77–78
pairs, 109–110
sequence functions for, 166
vs. structures, 165–166
sum function for, 169

literal characters, 89
lit variable, and capitalization

rules, 99
load command, 135
local functions, defining, 29–30

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 475

local variables
defining, 28
for value returned by read

function, 88
log information, streams for, 249
long strings, 250
look function, 80, 93
lookup key, of hash table, 158
loop macro, 93, 136–137, 193,

195–202
breaking out, 198
collect clause, 198
counting from starting point to

ending point, 197
do token, 197
iterating through list values, 197
with multiple for clauses, 198–199
nested, 199
periodic table of, 200–201
when token, 197

loops
with dotimes function, 175
for evolving environment,

202–218
and functional programming, 315
getting out of infinite, 93
preventing infinite, 111

M
machine language, 4
macroexpand command, 345, 348,

349–350
macro expansion, 341–342
macros, 54, 82, 104–105, 339, 443. See

also domain-specific
language (DSL);
programming language

avoiding repeated execution,
347–348

avoiding variable capture,
348–350

dangers and alternatives, 352–353
for defining new function, 370
helper function, 358
to implement lazy command, 379
reader, 101
recursive, 350–352
simple example, 340–345

for splitting lists, 346–347
svg, 361–362
transformation, 342–344

main-loop function, 296, 298
make-array command, 154
make-city-edges function, 139, 140
make-city-nodes function, 143
make-edge-list function, 136, 140
make-hash-table command,

157–158, 161
make-lazy function, 381
make-orc function, 181
make-person function, 164, 165
make-string-input-stream function,

249, 263
make-string-output-stream

command, 249
mapcan function, 146, 147, 314, 363
mapcar function, 74, 141, 359
mapc function, 118, 138, 162
map function, 169–170
maplist function, 126
map of city

drawing, 145–149
showing only visited nodes,

146–148
mapping lazy lists, 383–384
mathematical functions,

properties, 293
mathematical sets, hash tables for, 204
mathematical syntax, languages

using, 6
max function, 212
maximize in loop macro, 201
McCarthy, John, 6–7

“Recursive Functions of Symbolic
Expressions and Their
Computation by
Machine,” 7

member function, 60–61, 96
memoization, 328–331
memory, 5, 156

software transactional, 461
Metaobject Protocol (MOP), 451
minimax algorithm code, game tree

analysis with, 394
minimize in loop macro, 201
mod (remainder) function, 208

Land of Lisp
© 2010 by Conrad Barski, M.D.

476 INDEX

monetary floating-point value, 223
monster-attack function, 181

for orcs, 182
for slime mold, 185

monster-hit function, 176, 184
monsters. See Orc Battle game
monster-show function, for orcs, 182
MOP (Metaobject Protocol), 451
most-negative-fixnum, 397
most-positive-fixnum, 397
move function, 207–208
move in game, checking legality, 148
multiparadigm language, 18
multiple dispatch, 452
multiple-value-bind command, 159
mutations, 165, 210

with reproduce function, 211
my-length function, 331–332

custom, 345
improving, 350–352

N
named in loop macro, 200
names of functions, available in

defined functions, 29–30
namespaces, for variables and

functions, 75
nconc in loop macro, 201
neato command (Graphviz), 115
negative infinity, 397
neighbors function, 142, 314–315,

329–330
nested alists, 142
nested forms, 36
nested lists, 41–42
nested loop macro, 199
nested tags, in XML, 357
network computers, communication

between, 245
never in loop macro, 201
new-game function, 144

to draw known city, 147
#\newline, 89
new line

control sequences for, 227–228
in printed output, 226
before printing, 87

nil, 38, 39, 52, 107
lists not ending with, 109
symmetry of () and, 49–52

nodes, 118
for Congestion City, 142–144
identifiers, converting, 116–117

nodes->dot function, 118, 119
nondeterministic programming, 454
nonvisible characters, literals for, 89
nth function, 156
nullary functions, 120
null function, 61–62
numberp function, 170
numbers, 34–35

comparison, 65
control sequences for formatting,

225–226
num-players variable, 418

O
object-oriented programming (OOP)

languages, 9, 163, 451
vs. Lisp, 165

objects
descriptions

at specific location, 77–78
visible, 78–79

inventory check, 83–84
picking up, 82–83

objects-at function, 78, 82, 83
on in loop macro, 201
OOP (object-oriented programming)

languages, 9, 163, 451
vs. Lisp, 165

optimizing functional code, 326
closures, 326–328
memoization, 328–331
tail call optimization, 331–334

orc-battle function, 174, 187–188
Orc Battle game, 172–188

global variables for player and
monsters, 173–174

helper functions for player
attacks, 177–178

main game functions, 174–175
monster management functions,

178–179

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 477

monsters, 179–186
checking for dead, 179
Cunning Brigand, 185–186
functions for building, 174
generic, 180–181
hydra, 183–184
Slimy Slime Mold, 184–185
Wicked Orc, 181–182

player management functions,
175–177

starting game, 187–188
orc datatype, 181
or operator, 58
orthogonal issues, 387
output-stream-p function, 240
output streams, 238, 239–240

with-open-file command for, 242

P

padded value, for format function, 223
padding parameter, for number

width, 225
pairs, 109–110
pairs function, 351, 359
parallel games, web server for

multiple, 410
parameters, quoting, 95
parametric polymorphism, 9
paranoid strategy, 418
parentheses ()

for calling commands and
functions, 22, 24

empty lists, 25
symmetry of nil and, 49–52

for list of declared variables
in let, 28

for organizing code into lists, 33
parse-integer function, 260
parse-params function, 261
parse-url function, 261–262
path descriptions

in game, 72–77
multiple at once, 73–77

performance
arrays vs. lists, 156–157
cons cells and, 113
for Dice of Doom game, 326–336
functional programming and, 300

hash tables and, 160–161, 163
tail calls and, 333

periodic table of loop macro, 200–201
permitted commands, adding to

list, 368
person-age function, 164
pick-chance-branch function, 420–421
pick-monster function, 176
pickup function, 82
pi constant, 226
picture, from DOT file, 120–123
player-attack function, 176, 177
player function, 314
play-vs-computer function,

324–325, 389
play-vs-human function, 386
police roadblocks, 139
polygon function, 362–363
polygons, for die, 403
port

number in socket address, 245
taking control of, 246

port 80, 264
port 8080, 264
position function, 167, 261
positive infinity, 397
POST request, 258
power, 193
predicates, 78, 116
:pretty parameter, 117
prin1 function, 87
prin1-to-string function, 98, 116
princ function, 35, 90–91, 222,

223–224
print-circle variable, 111
printed representation, creating

object from, 164
print function, 86–87

priority use, 88
printing. See also format function

creating stream for functions, 121
multiple lines of output, 226–228
to screen, 86–87
text justification, 228–231

print-tag function, 358
problem solving, 20
progn command, 54
programming

heuristic techniques, 389
nondeterministic, 454

Land of Lisp
© 2010 by Conrad Barski, M.D.

478 INDEX

programming language. See also
macros

higher-order, 298–300
learning, 2

properties in structures, 163
push function, 82–83, 112, 138, 240

for hash table values, 162
pushnew command, 368, 370
Python, 9

Q
quasiquoting, 73
quit command, 19
quote command, 95
quoting, 37
quote-it function, 95

R
:radix parameter, 260
raise-price function, 445
RAM, 156
random edges

generating, 135–136
and island prevention, 137–139

random function, 177, 308, 363
random-monster function, 177
random-node function, 136
random numbers, generating, 177
random-plant function, 204
random walk, 363
randval function, 177, 180
range of function, 292
rate-position function, 323–324,

330–331, 391
new versions, 397

rational number, function
returning, 34

RDF (Resource Description
Framework), 3

read-char command, 241
reader, 33
reader macros, 101
read-eval-print loop (REPL), 19, 22

loading game code from, 365–366
setting up custom, 93–94
testing, 99–100

read-from-string function, 95, 410

read function
danger of, 101
local variable for value

returned by, 88
reading data, input streams for,

240–241
read-line function, 91
recurse macro, 350–351
recursion, 30, 50, 332

in macros, 350–352
reduced instruction set computer

(RISC) hardware
architecture, 8

reduce function, 167–169
initial value for, 168

reference, generalized, 155
referential transparency, 293, 301
reinforcements, rules for choosing

number in Dice of
Doom, 425

remhash function, 209
remove-duplicates function, 141, 320
remove-if function, 320
remove-if-not function, 78, 138
repeat in loop macro, 200
REPL. See read-eval-print loop (REPL)
reproduce function, 210

mutations with, 211
request body, 257

parsing, 263
request handler, testing, 265–266
request-handler function, 264
request-handler parameter, 264
request header, 257

parsing, 261–262
request parameters

decoding lists of, 260–261
decoding values for HTTP,

259–260
for web server, 258–261

Resource Description Framework
(RDF), 3

resources, freeing up, 248–249
response body, 258
response header, 258
restarts, 444–445
return-from in loop macro, 200
return in loop macro, 200
return value, for command, 25

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 479

reverse function, 222
RISC (reduced instruction set

computer) hardware
architecture, 8

roll-dice function, 420
round function, 159
Ruby, 9
rule engine, 310
runtime, 342

S
say-hello function, 87–88
SBCL (Steel Bank Common Lisp), 18
scalable vector graphics (SVG). See

SVG images
scenery description, association list

for, 70–71
Scheme, 15

namespace for, 76
tail call optimization in, 333

score-board function, 390
screen, printing to, 86–87
Script-Fu Scheme, 17
scripting, Lisp dialects for, 17
searching

lazy lists, 383–384
sequence functions for, 167

security, eval function and, 92
self function, 351–352
self-referential data structures, 111
semantics, 31–32
Semantic Web, 3
sending message over socket, 246–248
sequence functions, 166

for searching, 167
sequences, 166–170

iterating across, 167–170
serve function, 263–265
server, for socket connection, 246
set-difference function, 139
setf function, 27, 83, 111, 329, 447

for array, 154–155
to change structure property, 164

shallow copy of structure, 211
Short Code, 5
shortcut Boolean evaluation, 59
show-monsters function, 179
shutting down CLISP, 19

side effects, 441
of functional programming, 294,

300–301
signaling condition, for error

handling, 254
sin function, 293
single quote ('), as data indicator, 37
slots, 163
smaller function, 27
socket, serve function creation of, 264
socket-accept command, 247
socket-connect command, 247
sockets, 244–249

addresses, 245
connections, 246
sending message over, 246–248

socket-server-close command, 249
socket-server function, 246
socket streams, 238
software transactional memory, 461
some function, 167
sort function, 170
#\space, 89
special form

if as, 53
let command as, 340

special variable, 24
splash command, 371
split macro, 346–347
splitting lists, macro for, 346–347
#S prefix, for structures, 164
standard-output variable, 364
starting CLISP, 19
start-over function, 28
statistics, of dice rolls, 422
Steel Bank Common Lisp (SBCL), 18
Steele, Guy L., 16
streams, 121, 237–238

bidirectional, 247
closing on network computer,

248–249
commands to interact with, 242
for files, 242–243
types, 238–241

string builders, 250
string datatype, 70
string-downcase function, 358
string-equal function, 65
stringp function, 170

Land of Lisp
© 2010 by Conrad Barski, M.D.

480 INDEX

strings, 35
converting symbol list to, 98
sequence functions for, 166

string streams, 238, 249–251
debugging and, 250–251
get-header function testing with,

262–263
Stroustrup, Bjarne, 10
structures, 163–166

vs. lists in Lisp code, 165–166
when to use, 165–166

subseq function, 170
substitute-if function, 116–117
substitute-if-not function, 117
sum function, for arrays and lists, 169
sum in loop macro, 196, 201
suspension, 120. See also thunks
Sussman, Gerald Jay, 16
SVG images

attributes for, 361
circles, 362
Dice of Doom game board using,

402–408
polygons, 362–363
writing, 356–364

svg macro, 361–362
svg-style function, 362
SVG Web, 356
symbol-function command, 329
symbolp function, 170
symbols, 33–34

benefits of using, 71
comparing, 63
converting list to string, 98

symmetry
of () and nil, 49–52
between code and data, 91–92

syntax
building blocks for Lisp, 32–35
and semantics, 31–32

T
#\tab, 89
tables

output as, 228–229
trick for creating pretty, 232–233

tab variable, 331

tag macro, 359–360
to generate HTML, 360–361

tail call, 332
tail call optimization, 331–334
take-all function, 382
take function, 382
~t control sequence, 228–229
TCP/IP, 256
TCP packets, 245
technologies supporting Lisp, comic

book, 429–463
terpri function, 226–227
test functions, 116
testing

get-header function with string
stream, 262–263

user interface, 99–100
:test keyword parameter, 141

to use equal, 204
text. See also strings

breaking into equal length
pieces, 232

converting all caps to
capitalized, 97

justified, 228–231
processing, 67

text game interface, 92–99
testing, 99–100

the in loop macro, 200
then in loop macro, 201
thereis in loop macro, 201
threatened function, 391
threatened hex, in Dice of Doom, 390
three-way-if macro, 443
thunks, 120–121

for creating graph picture, 123
tilde (~), for control sequences, 223
time command, 161
to in loop macro, 201
top-level definition of variable, 23
top-offset variable, 403
tree-like data, 113
true/false functions, 78
turn function, for animals, 208–209
tweak-text function, 98
type-checking, 166

in generic functions, 167
type dispatching, 172

Land of Lisp
© 2010 by Conrad Barski, M.D.

INDEX 481

type-of function, 180–181
type predicates, for generic functions,

170–172

U
uedges->dot function, 126
ugraph->dot function, 126
ugraph->png function, 126, 145
undirected graphs, 124–127
unless, 55

in loop macro, 201
until in loop macro, 200
unwind-protect function, 256, 264
update-world function, 212
upfrom in loop macro, 201
upto in loop macro, 201
URLs for web pages, name/value

pairs in, 260
user interface, 85

command-line, 85
printing to screen, 86–87

for evolving environment game,
213–214

testing, 99–100
for Wizard’s Adventure Game,

92–99
using in loop macro, 200
usocket, 245

V
vacuum-tube computer systems, 4
values function, 159
variable capture, 348–350
variables. See also global variables;

local variables
asterisks (*) in names, 23
declaration in let command, 28
defining, 140
destruction, 327
in functional programming,

293, 301
function to create unique

name, 349
lexical, 123, 328
for location descriptions, 70
modifying value, 447
namespaces for, 75

variable shadowing, 333
versions of function, 172
vertical pipe (|), for case-sensitive

symbols, 89
virtual memory paging, performance

impact, 160
visible objects, describing, 78–79
visualizing graphs, 114
visual noise, 340

W
walk function, 81–82, 148
web-announce-winner function, 410
web forms, 258
web-handle-human function, 410–411
web-initialize function, 409, 410
web resources

downloading CLISP installer, 18
for Graphviz, 115
Lisp projects, 3

web server, 256–265
continuation-aware, 454
how it works, 256–258
interface for Dice of Doom,

408–412
for computer player, 412
for human player, 410–411
limitations, 409–410

parsing request body, 263
parsing request header, 261–262
request parameters, 258–261
serve function, 263–265

webserver.lisp file, 402
website

dynamic, 265–267
launching, 266–267

weld function, 367–368, 370–371
when in loop macro, 201
when token, 55, 197
while in loop macro, 200
winners function, 319–320
with in loop macro, 200
with-open-file command, 121, 122,

123, 242–244
with-open-stream macro, 264
with-output-to-string macro, 250–251

Land of Lisp
© 2010 by Conrad Barski, M.D.

482 INDEX

Wizard’s Adventure Game
basic requirements, 69–70
custom game commands, 365–373

dunk, 368–369
game-action macro, 369–371
welding, 366–368

custom interface, 92–99
DOT information for, 119–120
location descriptions, 71
look command, 79–80
map of house in alists, 114
object descriptions at specific

location, 77–79
object inventory check, 83–84
path descriptions, 72–77
picking up objects, 82–83
playing completed version,

371–373

scenery description with
association list, 70–71

walk function, 81–82
world for, 68–69

write-char command, 240

X
~x control sequence, 225
XML, 113
XML format

nested tags, 357
and SVG format, 357

xmlns attribute, 361

Z
zero, dividing by, 53

Land of Lisp
© 2010 by Conrad Barski, M.D.

