
“…makes JavaScript wizardry more accessible than
ever for experts and beginners alike.”

—Jesse James Garrett, Ajax pioneer

JavaScript makes it easy to add interactivity, animation,
and other tricks to your web pages. But this isn’t just a
book of JavaScripts for you to cut and paste into your
HTML, only to find out that nothing works as you’d
expected. Using real-world examples as the starting
point, author thau! walks you step-by-step through
various scripts and explains how they produce the
effects you want.

Because no discussion of JavaScript today is complete
without coverage of Ajax (Asynchronous JavaScript and
XML), this thoroughly updated second edition includes
new chapters on Ajax to get you up to speed with this
valuable method for creating truly dynamic web pages.
You’ll also find revised appendices and new examples
that reflect today's web environment. Learn to:

• Work with frames, forms, cookies, and alarms

• Use events to react to a user’s actions

• Perform image swaps and rollovers

www.nostarch.com

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
W

EB PROGRAM
M

ING

$39.95 ($49.95 CDN)

®

B R I N G Y O U R
W E B S I T E S T O

L I F E W I T H
J A V A S C R I P T

A N D A J A X !

B R I N G Y O U R
W E B S I T E S T O

L I F E W I T H
J A V A S C R I P T

A N D A J A X !

Visit bookofjavascript.com to

download code and images

for each example, answers to

assignments, script libraries for

hard-to-program applications,

and lots of useful software.

• Program your own functions to produce
customized solutions

• Store user preferences and build a shopping cart

• Use Ajax to turn web pages into applications

If you need to spruce up tired-looking pages, The Book
of JavaScript, 2nd Edition will help take your site from
bland to brilliant.

BONUS: Includes a complete reference to all JavaScript
objects and functions, including examples, properties,
methods, handlers, and browser compatibility!

A B O U T T H E A U T H O R

thau! has been creating Internet applications since
1993, starting with bianca.com, the first web-based
community on the Internet. He was Director of Software
Engineering and Senior Scientist at Wired Digital, and
he has taught programming languages to hundreds of
artists, engineers, and children. He is currently creating
data-sharing platforms for people studying biodiversity
while he works toward a Ph.D. in computer science at
the University of California, Davis.

T H E

B O O K

o f

T H E

B O O K

o f

®

JA
V

A
S

C
R

IP
T

2
N

D
 E

D
IT

IO
N

th
a

u
!

JA
V

A
S

C
R

IP
T

2
N

D
 E

D
IT

IO
N

JAVASCRIP T
2 N D E D I T I O N

JAVASCRIP T
2 N D E D I T I O N

A P R A C T I C A L G U I D E T O I N T E R A C T I V E
W E B P A G E S

t h a u !

T H E B O O K o fT H E B O O K o f

®

NOW
 WITHAjax!

U S I N G V A R I A B L E S A N D B U I L T - I N
F U N C T I O N S T O U P D A T E Y O U R W E B

P A G E S A U T O M A T I C A L L Y

With JavaScript you can update the con-
tent on your pages automatically—every day,

every hour, or every second. In this chapter,
I’ll focus on a simple script that automatically

changes the date on your web page.
Along the way you’ll learn:

How JavaScript uses variables to remember simple items such as names
and numbers

How JavaScript keeps track of more complicated items such as dates

How to use JavaScript functions to write information to your web page

Before getting into the nuts and bolts of functions and variables, let’s
take a look at a couple of examples of web pages that automatically update
themselves, starting with the European Space Agency (http://www.esa.int).
As you can see in Figure 2-1, the ESA’s home page shows you the current date.
Rather than change the home page every day, the ESA uses JavaScript to
change the date automatically.

JS2E_03.book Page 15 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

16 Chapter 2

Figure 2-1: Using JavaScript to display the current date

An even more frequently updated page is the home page of the Book of
JavaScript website (http://www.bookofjavascript.com), which updates the
time as well as the date (see Figure 2-2). You don’t have to sit in front of your
computer, updating the dates and times on your websites. JavaScript can set
you free! The ability to write HTML to web pages dynamically is one of
JavaScript’s most powerful features.

Figure 2-2: Dynamically updating the date and time

To understand how to update the date and time on the page, you’ll first
have to learn about variables, strings, and functions. Your homework assign-
ment at the end of this chapter will be to figure out how to add seconds to
the time.

Variables Store Information

Think back to those glorious days of algebra class when you learned about
variables and equations. For example, if x = 2, y = 3, and z = x + y, then z = 5.
In algebra, variables like x, y, and z store or hold the place of numbers. In
JavaScript and other programming languages, variables also store other
kinds of information.

Syntax of Variables
The syntax of variables (the rules for defining and using variables) is slightly
different in JavaScript from what it was in your algebra class. Figure 2-3 illus-
trates the syntax of variables in JavaScript with a silly script that figures out
how many seconds there are in a day.

NOTE Figure 2-3 does not write the results of the JavaScript to the web page—I’ll explain how
to do that in Figure 2-4.

JS2E_03.book Page 16 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 17

<html>
<head>
<title>Seconds in a Day</title>

<script type = "text/javascript">
<!-- hide me from older browsers

 var seconds_per_minute = 60;
var minutes_per_hour = 60;
var hours_per_day = 24;

 var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->
 </script>
</head>
<body>

<h1>Know how many seconds are in a day?</h1>
<h2>I do!</h2>

</body>
</html>

Figure 2-3: Defining and using variables

There’s a lot going on here, so let’s take it line by line. Line is a
statement (a statement in JavaScript is like a sentence in English), and it
says to JavaScript, “Create a variable called seconds_per_minute and set its value
to 60.” Notice that ends with a semicolon. Semicolons in JavaScript are like
periods in English: They mark the end of a statement (for example, one that
defines a variable, as above). As you see more and more statements, you’ll get
the hang of where to place semicolons.

The first word, var, introduces a variable for the first time—you don’t
need to use it after the first instance, no matter how many times you employ
the variable in the script.

NOTE Many people don’t use var in their code. Although most browsers let you get away
without it, it’s always a good idea to put var in front of a variable the first time you use it.
(You’ll see why when I talk about writing your own functions in Chapter 6.)

Naming Variables
Notice that the variable name in is pretty long—unlike algebraic variables,
it’s not just a single letter like x, y, or z. When using variables in JavaScript
(or any programming language), you should give them names that indicate
what piece of information they hold. The variable in stores the number
of seconds in a minute, so I’ve called it seconds_per_minute.

If you name your variables descriptively, your code will be easier to under-
stand while you’re writing it, and much easier to understand when you return
to it later for revision or enhancement. Also, no matter which programming

JS2E_03.book Page 17 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

18 Chapter 2

language you use, you’ll spend about 50 percent of your coding time finding
and getting rid of your mistakes. This is called debugging—and it’s a lot easier
to debug code when the variables have descriptive names. You’ll learn more
about debugging in Chapter 14.

There are four rules for naming variables in JavaScript:

1. The initial character must be a letter, an underscore, or a dollar sign,
but subsequent characters may be numbers as well.

2. No spaces are allowed.

3. Variables are case sensitive, so my_cat is different from My_Cat, which in
turn is different from mY_cAt. As far as the computer is concerned, each
of these would represent a different variable—even if that’s not what
the programmer intended. (You’ll see an example of this in the section
“alert()” on page 22.) To avoid any potential problems with capitaliza-
tion, I use lowercase for all my variables, with underscores (_) where
there would be spaces in ordinary English.

4. You can’t use reserved words. Reserved words are terms used by the
JavaScript language itself. For instance, you’ve seen that the first time
you use a variable, you should precede it with the word var. Because
JavaScript uses the word var to introduce variables, you can’t use var as a
variable name. Different browsers have different reserved words, so the
best thing to do is avoid naming variables with words that seem like terms
JavaScript might use. Most reserved words are fairly short, so using longer,
descriptive variable names keeps you fairly safe. I often call my variables
things like the_cat, or the_date because there are no reserved words that
start with the word the. If you have a JavaScript that you’re certain is correct,
but it isn’t working for some reason, it might be because you’ve used a
reserved word.

Arithmetic with Variables
Line in Figure 2-3 introduces a new variable called seconds_per_day and sets it
equal to the product of the other three variables using an asterisk (*), which
means multiplication. A plus sign (+) for addition, a minus sign (-) for subtrac-
tion, and a slash (/) for division represent the other major arithmetic functions.

When the browser finishes its calculations in our example, it reaches the
end of the JavaScript in the head () and goes down to the body of the
HTML. There it sees two lines of HTML announcing that the page knows
how many seconds there are in a day.

<h1>Know how many seconds are in a day?</h1>
<h2>I do!</h2>

So now you have a page that knows how many seconds there are in a day.
Big deal, right? Wouldn’t it be better if you could tell your visitors what the
answer is? Well, you can, and it’s not very hard.

JS2E_03.book Page 18 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 19

Write Here Right Now: Displaying Results

JavaScript uses the write() function to write text to a web page. Figure 2-4 shows
how to use write() to let your visitors know how many seconds there are in a
day. (The new code is in bold.) Figure 2-5 shows the page this code displays.

<html>
<head>
<title>Seconds in a Day</title>

<script type = "text/javascript">
<!-- hide me from older browsers

var seconds_per_minute = 60;
var minutes_per_hour = 60;
var hours_per_day = 24;

var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->
</script>
</head>
<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">
<!-- hide me from older browsers

 window.document.write("there are ");
window.document.write(seconds_per_day);
window.document.write(" seconds in a day.");

// show me -->
</script>

</body>
</html>

Figure 2-4: Using write() to write to a web page

Figure 2-5: JavaScript’s calculations

JS2E_03.book Page 19 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

20 Chapter 2

Line-by-Line Analysis of Figure 2-4
Line in Figure 2-4 writes the words there are to the web page (only the
words between the quote marks appear on the page). Don’t worry about all
the periods and what window and document really mean right now (I’ll cover
these topics in depth in Chapter 4, when we talk about image swaps). For
now, just remember that if you want to write something to a web page, use
window.document.write("whatever");, placing the text you want written to the
page between the quotes. If you don’t use quotes around your text, as in

window.document.write(seconds_per_day);

then JavaScript interprets the text between the parentheses as a variable and
writes whatever is stored in the variable (in this case, seconds_per_day) to the
web page (see Figure 2-6). If you accidentally ask JavaScript to write out a
variable you haven’t defined, you’ll get a JavaScript error.

Be careful not to put quotes around variable names if you want
JavaScript to know you’re talking about a variable. If you add quotes
around the seconds_per_day variable, like this:

window.document.write("seconds_per_day");

then JavaScript will write seconds_per_day to the web page. The way JavaScript
knows the difference between variables and regular text is that regular text
has quotes around it and a variable doesn’t.

Strings
Any series of characters between quotes is called a string. (You’ll be seeing
lots of strings throughout this book.) Strings are a basic type of information,
like numbers—and like numbers, you can assign them to variables.

To assign a string to a variable, you’d write something like this:

var my_name = "thau!";

The word thau! is the string assigned to the variable my_name.
You can stick strings together with a plus sign (+), as shown in the bolded

section of Figure 2-6. This code demonstrates how to write output to your page
using strings.

<html>
<head>
<title>Seconds in a Day</title>
<script type = "text/javascript">
<!-- hide me from older browsers

var seconds_per_minute = 60;
var minutes_per_hour = 60;
var hours_per_day = 24;

var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

JS2E_03.book Page 20 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 21

// show me -->
</script>
</head>
<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">
<!-- hide me from older browsers

 var first_part = "there are ";
 var last_part = " seconds in a day.";
 var whole_thing = first_part + seconds_per_day + last_part;

window.document.write(whole_thing);

// show me -->
</script>

</body>
</html>

Figure 2-6: Putting strings together

Line-by-Line Analysis of Figure 2-6
Line in Figure 2-6,

var first_part = "there are ";

assigns the string "there are" to the variable first_part. Line ,

var last_part = " seconds in a day.";

sets the variable last_part to the string "seconds in a day." Line glues
together the values stored in first_part, seconds_per_day, and last_part.
The end result is that the variable whole_thing includes the whole string
you want to print to the page, there are 86400 seconds in a day. The
window.document.write() line then writes whole_thing to the web page.

NOTE The methods shown in Figures 2-4 and 2-6 are equally acceptable ways of writing
there are 86400 seconds in a day. However, there are times when storing strings
in variables and then assembling them with the plus sign (+) is clearly the best way
to go. We’ll see a case of this when we finally get to putting the date on a page.

More About Functions

Whereas variables store information, functions process that information.
All functions take the form functionName(). Sometimes there’s some-

thing in the parentheses and sometimes there isn’t. You’ve already seen
one of JavaScript’s many built-in functions, window.document.write(), which

JS2E_03.book Page 21 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

22 Chapter 2

writes whatever lies between the parentheses to the web page. Before diving
into the date functions that you’ll need to write the date to your web page,
I’ll talk about two interesting functions, just so you get the hang of how
functions work.

alert()

One handy function is alert(), which puts a string into a little announcement
box (also called an alert box). Figure 2-7 demonstrates how to call an alert(),
and Figure 2-8 shows what the alert box looks like.

<html>
<head>
<title>An Alert Box</title>

<script type = "text/javascript">
<!-- hide me from older browsers

 alert("This page was written by thau!");
// show me -->
</script>

<body>
 <h1>To code, perchance to function</h1>
</body>
</html>

Figure 2-7: Creating an alert box

The first thing visitors see when they come to the page Figure 2-7
creates is an alert box announcing that I wrote the page (Figure 2-8).
The alert box appears because of , which tells JavaScript to execute its
alert() function.

The alert() function is useful for troubleshooting when your JavaScript
isn’t working correctly. Let’s say you’ve typed in Figure 2-6, but when you run
the code, you see that you must have made a typo—it says there are 0 seconds
in a day instead of 86400. You can use alert() to find out how the different
variables are set before multiplication occurs. The script in Figure 2-9 contains
an error that causes the script to say there are “undefined” seconds in a year;
and to track down the error, I’ve added alert() function statements that tell
you why this problem is occurring.

While the alert box is on the
screen, the browser stops doing any
work. Clicking OK in the alert box
makes it go away and allows the
browser to finish drawing the web
page. In this case, that means writing
the words To code, perchance to function
to the page ().

Figure 2-8: The alert box

JS2E_03.book Page 22 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 23

<html>
<head>
<title>Seconds in a Day</title>

<script type = "text/javascript">
<!-- hide me from older browsers

var seconds_per_minute = 60;
var minutes_per_hour = 60;

 var Hours_per_day = 24;
 alert("seconds per minute is: " + seconds_per_minute);
 alert("minutes per hour is: " + minutes_per_hour);
 alert("hours per day is: " + hours_per_day);
 var seconds_per_day = seconds_per_minute * minutes_per_hour * hours_per_day;

// show me -->
</script>
</head>
<body>

<h1>My calculations show that . . .</h1>

<script type = "text/javascript">
<!-- hide me from older browsers

var first_part = "there are ";
var last_part = " seconds in a day.";
var whole_thing = first_part + seconds_per_day + last_part;

window.document.write(whole_thing);

// show me -->
</script>

</body>
</html>

Figure 2-9: Using alert() to find out what’s wrong

Line-by-Line Analysis of Figure 2-9

The problem with this script is in . Notice the accidental capitalization of
the first letter in Hours_per_day. This is what causes the script to misbehave.
Line multiplies the other numbers by the variable hours_per_day, but
hours_per_day was not set—remember, JavaScript considers it a different
variable from Hours_per_day—so JavaScript thinks its value is either 0 or
undefined, depending on your browser. Multiplying anything by 0 results in
0, so the script calculates that there are 0 seconds in a day. The same holds
true for browsers that think hours_per_day is undefined. Multiplying anything

JS2E_03.book Page 23 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

24 Chapter 2

by something undefined results in the answer being undefined, so the browser
will report that there are undefined seconds in a day.

This script is short, making it easy to see the mistake. However, in longer
scripts it’s sometimes hard to figure out what’s wrong. I’ve added , , and
in this example to help diagnose the problem. Each of these statements puts
a variable into an alert box. The alert on will say seconds_per_minute is: 60.
The alert on will say hours_per_day is: 0, or, depending on your browser, the
alert won’t appear at all. Either way, you’ll know there’s a problem with the
hours_per_day variable. If you can’t figure out the mistake by reading the script,
you’ll find this type of information very valuable. Alerts are very useful
debugging tools.

prompt()
Another helpful built-in function is prompt(), which asks your visitor for some
information and then sets a variable equal to whatever your visitor types. Fig-
ure 2-10 shows how you might use prompt() to write a form letter.

<html>
<head>
<title>A Form Letter</title>
<script type = "text/javascript">
<!-- hide me from older browsers

 var the_name = prompt("What's your name?", "put your name here");

// show me -->
</script>
</head>
<body>

 <h1>Dear

<script type = "text/javascript">
<!-- hide me from older browsers

document.write(the_name);

// show me -->
</script>

,</h1>

Thank you for coming to my web page.

</body>
</html>

Figure 2-10: Using prompt() to write a form letter

Notice that prompt() in has two strings inside the parentheses: "What's
your name?" and "put your name here". If you run the code in Figure 2-10, you’ll
see a prompt box that resembles Figure 2-11. (I’ve used the Opera browser in

JS2E_03.book Page 24 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 25

this illustration; prompt boxes will look somewhat different in IE and other
browsers.) If you type Rumpelstiltskin and click OK, the page responds with
Dear Rumpelstiltskin, Thank you for coming to my web page.

Figure 2-11: Starting a form letter with a prompt box

The text above the box where your visitors will type their name ("What's
your name?") is the first string in the prompt function; the text inside the box
("put your name here") is the second string. If you don’t want anything inside
the box, put two quotes ("") right next to each other in place of the second
string to keep that space blank:

var the_name = prompt("What's your name?", "");

If you look at the JavaScript in the body (starting in), you’ll see
how to use the variable the_name. First write the beginning of the heading
to the page using normal HTML. Then launch into JavaScript and use
document.write(the_name) to write whatever name the visitor typed into the
prompt box for your page. If your visitor typed yertle the turtle into
that box, yertle the turtle gets written to the page. Once the item in the_name
is written, you close the JavaScript tag, write a comma and the rest of the
heading using regular old HTML, and then continue with the form letter.
Nifty, eh?

The prompt() function is handy because it enables your visitor to supply
the variable information. In this case, after the user types a name into the
prompt box in Figure 2-10 (thereby setting the variable the_name), your script
can use the supplied information by calling that variable.

Parameters
The words inside the parentheses of functions are called parameters. The
document.write() function requires one parameter: a string to write to your
web page. The prompt() function takes two parameters: a string to write above
the box and a string to write inside the box.

Parameters are the only aspect of a function you can control; they are
your means of providing the function with the information it needs to do its
job. With a prompt() function, for example, you can’t change the color of
the box, how many buttons it has, or anything else; in using a predefined
prompt box, you’ve decided that you don’t need to customize the box’s
appearance. You can only change the parameters it specifically provides—

JS2E_03.book Page 25 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

26 Chapter 2

namely, the text and heading of the prompt you want to display. You’ll learn
more about controlling what functions do when you write your own functions
in Chapter 6.

Writing the Date to Your Web Page

Now that you know about variables and functions, you can print the date to
your web page. To do so, you must first ask JavaScript to check the local time
on your visitor’s computer clock:

var now = new Date();

The first part of this line, var now =, should look familiar. It sets the variable
now to some value. The second part, new Date(), is new; it creates an object.

Objects store data that require multiple pieces of information, such as a
particular moment in time. For example, in JavaScript you need an object to
describe 2:30 PM on Saturday, January 7, 2006, in San Francisco. That’s because
it requires many different bits of information: the time, day, month, date,
and year, as well as some representation (in relation to Greenwich Mean
Time) of the user’s local time. As you can imagine, working with an object
is a bit more complicated than working with just a number or a string.

Because dates are so rich in information, JavaScript has a built-in Date
object to contain those details. When you want the user’s current date and
time, you use new Date() to tell JavaScript to create a Date object with all the
correct information.

NOTE You must capitalize the letter D in Date to tell JavaScript you want to use the built-in
Date object. If you don’t capitalize it, JavaScript won’t know what kind of object you’re
trying to create, and you’ll get an error message.

Built-in Date Functions
Now that JavaScript has created your Date object, let’s extract information
from it using JavaScript’s built-in date functions. To extract the current year,
use the Date object’s getYear() function:

var now = new Date();
var the_year = now.getYear();

Date and Time Methods
In the code above, the variable now is a Date object, and the function getYear()
is a method of the Date object. Methods are simply functions that are built in
to objects. For example, the getYear() function is built in to the Date object
and gets the object’s year. Because the function is part of the Date object, it
is called a method. To use the getYear() method to get the year of the date
stored in the variable now, you would write:

now.getYear()

JS2E_03.book Page 26 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 27

Table 2-1 lists commonly used date methods. (You can find a complete
list of date methods in Appendix C.)

NOTE Notice that getMonth() returns a number between 0 and 11; if you want to show the
month to your site’s visitors, to be user-friendly you should add 1 to the month after
using getMonth() as shown in in Figure 2-12.

Internet Explorer and various versions of Netscape deal with years in
different and strange ways:

Some versions of Netscape, such as Netscape 4.0 for the Mac, always
return the current year minus 1900. So if it’s the year 2010, getYear()
returns 110.

Other versions of Netscape return the full four-digit year except when
the year is in the twentieth century, in which case they return just the last
two digits.

Netscape 2.0 can’t deal with dates before 1970 at all. Any date before Jan-
uary 1, 1970 is stored as December 31, 1969.

In Internet Explorer, getYear() returns the full four-digit year if the year
is after 1999 or before 1900. If the year is between 1900 and 1999, it
returns the last two digits.

You’d figure a language created in 1995 wouldn’t have the Y2K problem,
but the ways of software developers are strange. Later in this chapter I’ll show
you how to fix this bug.

Code for Writing the Date and Time

Now let’s put this all together. To get the day, month, and year, we use
the getDate(), getMonth(), and getYear() methods. To get the hour and the
minutes, we use getHours() and getMinutes().

Figure 2-12 shows you the complete code for writing the date and
time (without seconds) to a web page, as seen on the Book of JavaScript
home page.

Table 2-1: Commonly Used Date and Time Methods

Name Description

getDate() The day of the month as an integer from 1 to 31

getDay() The day of the week as an integer where 0 is Sunday and 1 is Monday

getHours() The hour as an integer between 0 and 23

getMinutes() The minutes as an integer between 0 and 59

getMonth() The month as an integer between 0 and 11 where 0 is January and 11 is
December

getSeconds() The seconds as an integer between 0 and 59

getTime() The current time in milliseconds where 0 is January 1, 1970, 00:00:00

getYear() The year, but this format differs from browser to browser

JS2E_03.book Page 27 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

28 Chapter 2

<html>
<head><title>The Book of JavaScript</title>
<script type = "text/javascript">
<!-- hide me from older browsers
// get the Date object
//

 var date = new Date();

// get the information out of the Date object
//
var month = date.getMonth();
var day = date.getDate();
var year = date.getYear();
var hour = date.getHours();
var minutes = date.getMinutes();

 month = month + 1; // because January is month 0
// fix the Y2K bug
//

 year = fixY2K(year);

// fix the minutes by adding a 0 in front if it's less than 10
//

 minutes = fixTime(minutes);

// create the date string
//

 var date_string = month + "/" + day + "/" + year;
 var time_string = hour + ":" + minutes;
 var date_time_string = "Today is " + date_string + ". The time is now " +

time_string + ".";

// This is the Y2K fixer function--don't worry about how this works,
// but if you want it in your scripts, you can cut and paste it.
//
function fixY2K(number) {
 if (number < 1000) {
 number = number + 1900;
 }
 return number;
}

// This is the time fixer function--don't worry about how this works either.
function fixTime(number) {
 if (number < 10) {
 number = "0" + number;
 }
 return number;
}

// show me -->
</script>
</head>
<body>

JS2E_03.book Page 28 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

Using Var iables and Bu i l t - in Funct ions to Update Your Web Pages Automat ical ly 29

 <h1>Welcome to the Book of JavaScript Home Page!</h1>

<script type = "text/javascript">
<!-- hide me from older browsers

 document.write(date_time_string);
// show me -->
</script>
</body>
</html>

Figure 2-12: Writing the current date and time to a web page

Line-by-Line Analysis of Figure 2-12
Here are a few interesting things in this example.

Getting the Date and Time

The lines from up until get the current date and time from the visitor’s
computer clock and then use the appropriate date methods to extract the
day, month, year, hours and minutes. Although I’m using a variable name
date in to store the date, I could have used any variable name there: the_date,
this_moment, the_present, or any valid variable name. Don’t be fooled into
thinking that a variable needs to have the same name as the corresponding
JavaScript object; in this case, date just seems like a good name.

Making Minor Adjustments

Before building the strings we will write to the website, we need to make some
little adjustments to the date information just collected. Here’s how it works:

Line adds 1 to the month because getMonth() thinks January is month 0.

Line fixes the Y2K problem discussed earlier in the chapter, in which
the getYear() method returns the wrong thing on some older browsers.
If you feed fixY2K() the year returned by date.getYear(), it will return the
correct year. The fixY2K() function is not a built-in JavaScript function.
I had to write it myself. Don’t worry about how the function works
right now.

Line fixes a minor formatting issue, using another function that’s
not built-in. If the script is called at 6 past the hour, date.getMinutes()
returns 6. If you don’t do something special with that 6, your time will
look like 11:6 instead of 11:06. So fixTime() sticks a zero in front of
a number if that number is less than 10. You can use fixTime() to fix
the seconds too, for your homework assignment.

Getting the String Right

Now that we’ve made a few minor adjustments, it’s time to build the strings.
Line builds the string for the date. Here’s the wrong way to do it:

var date_string = "month / day / year";

JS2E_03.book Page 29 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

30 Chapter 2

If you wrote your code this way, you’d get a line that says Today is month
/ day / year. Why? Remember that JavaScript doesn’t look up variables if
they’re inside quotes. So place the variables outside the quote marks and
glue everything together using plus signs (+):

var date_string = month + "/" + day + "/" + year;

This may look a little funny at first, but it’s done so frequently that you’ll
soon grow used to it. Line creates the string to represent the time. It is very
similar to . Line puts and together to create the string that will be
written to the website. Lines through could all have been written as one
long line:

var date_time_string = "Today is " + month + "/" + day + "/" + year +
". The time is now " + hour + ":" + minutes + ".";

However, using three lines makes the code easier for people to read and
understand. It’s always best to write your code as if other people are going to
read it.

What Are Those Other Functions?

The JavaScript between and defines the fixY2K() and fixTime() functions.
Again, don’t worry about these lines for now. We’ll cover how to write your
own functions in glorious detail in Chapter 6.

JavaScript and HTML

Make sure to place your JavaScript and HTML in the proper order. In
Figure 2-12, the welcoming HTML in precedes the JavaScript that actually
writes the date and time in , since the browser first writes that text and then
executes the JavaScript. With JavaScript, as with HTML, browsers read from
the top of the page down. I’ve put document.write() in the body so that the
actual date information will come after the welcome text. I’ve put the rest
of the JavaScript at the head of the page to keep the body HTML cleaner.

Why document.write()?

Notice that the code in Figure 2-11 uses document.write() instead of
window.document.write(). In general, it’s fine to drop the word window and the
first dot before the word document. In future chapters I’ll tell you when the
word window must be added.

How the European Space Agency Writes the Date to Its Page

The JavaScript used by the European Space Agency is very much like the
code I used for the Book of JavaScript web page. One big difference between
the two is that the ESA prints out the month using abbreviations like Jan and
Feb for January and February. They do this using arrays, a topic discussed in
Chapter 8, so in Figure 2-13 I’ve modified their code a bit to focus on topics
covered so far.

JS2E_03.book Page 30 Tuesday, November 14, 2006 5:12 PM

From The Book of JavaScript, 2nd Edition
No Starch Press, Copyright © 2006 by thau!

