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IDA is most widely known as a disassem-
bler, and it is clearly one of the finest tools 

available for performing static analysis of 
binaries. Given the sophistication of modern 

anti–static analysis techniques, it is not uncommon 
to combine static analysis tools and techniques with
dynamic analysis tools and techniques in order to take advantage of the best 
of both worlds. Ideally, all of these tools would be integrated into a single pack-
age. Hex-Rays made that move when it introduced a debugger in version 4.5 
of IDA and solidified IDA’s role as a general-purpose reverse engineering 
tool. With each successive version of IDA, its debugging capabilities have been 
improved. In its latest version, IDA is capable of local and remote debugging 
on a number of different platforms and supports a number of different pro-
cessors. IDA may also be configured to act as a frontend to Microsoft’s WinDbg 
debugger, making it possible to perform Windows kernel debugging.

Over the course of the next few chapters, we will cover the basic features 
of IDA’s debugger, using the debugger to assist with obfuscated code analysis 
and remote debugging of Windows, Linux, or OS X binaries. While we assume 
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that the reader possesses some familiarity with the use of debuggers, we will 
review many of the basic capabilities of debuggers in general as we progress 
through the features of IDA’s debugger.

Launching the Debugger

Debuggers are typically used to perform one of two tasks: examining memory 
images (core dumps) associated with crashed processes and executing pro-
cesses in a very controlled manner. A typical debugging session begins with 
the selection of a process to debug. There are two ways this is generally 
accomplished. First, most debuggers are capable of attaching to a running 
process (assuming the user has permission to do so). Depending on the 
debugger being used, the debugger itself may be able to present a list of 
available processes to choose from. Lacking such capability, the user must 
determine the ID of the process to which he wishes to attach and then com-
mand the debugger to attach to the specified process. The precise manner 
by which a debugger attaches to a process varies from one operating system 
to another and is beyond the scope of this book. When attaching to an exist-
ing process, it is not possible to monitor or control the process’s initial startup 
sequence, because all of the startup and initialization code will already have 
completed before you have a chance to attach to the process.

The manner by which you attach to a process with the IDA debugger 
depends on whether a database is currently open or not. When no database 
is open, the Debugger�Attach menu is available, as shown in Figure 24-1.

Figure 24-1: Attaching to an arbitrary 
process

Available options allow selection of different IDA debuggers (remote 
debugging is covered in Chapter 26). Options vary depending on the plat-
form on which you are running IDA. Selecting a local debugger causes IDA 
to display a list of running processes to which you may attach. Figure 24-2 
shows an example of such a list.
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Figure 24-2: Debugger process-selection dialog

Once a process has been selected, the debugger creates a temporary 
database by taking a memory snapshot of the running process. In addition 
to the memory image of the running process, the temporary database con-
tains sections for all shared libraries loaded by the process, resulting in a sub-
stantially larger and more cluttered database than you may be accustomed 
to. One drawback to attaching to a process in this manner is that IDA has less 
information available to disassemble the process because IDA’s loader never
processes the corresponding executable file 
image and an automated analysis of the binary 
is never performed. In fact, once the debugger 
has attached to the process, the only instruc-
tions that will be disassembled in the binary are 
the instruction referenced by the instruction 
pointer and those that flow from it. Attaching 
to a process immediately pauses the process, 
allowing you the opportunity to set breakpoints 
prior to resuming execution of the process.

An alternate way to attach to a running 
process is to open the associated executable in 
IDA before attempting to attach to the running 
process. With a database open, the Debugger 
menu takes on an entirely different form, as 
shown in Figure 24-3.

If you are not presented with this menu 
(or one very like it), then you probably have 
not yet specified a debugger to use for the cur-
rently open file type. In such cases, Debugger�
Select Debugger will present a list of suitable 
debuggers given the current file type. Figure 
24-4 shows a typical debugger selection dialog.

Figure 24-3: Debugger 
menu with a database 
open
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Figure 24-4: Debugger selection dialog

You may make your selection the default debugger for the current file 
type by checking the box at the bottom of the dialog. The current default 
debugger, if any, is noted just above the checkbox. Once you have selected 
a debugger, you may change debuggers at any time via the Debug�Switch 
Debugger menu.

When Debugger�Attach to Process is selected, IDA’s behavior will vary 
depending on the type of file opened in the active database. If the file is an 
executable file, IDA will display a list of all processes that have the same name 
as the file opened in the database. If IDA can find no process with a match-
ing name, IDA will display a list of every running process and leave it to you 
to choose the correct process to attach to. In any case, you may attach to any 
of the displayed processes, but IDA has no way to guarantee that the process 
was started with same binary image that is loaded in the open IDA database.

IDA behaves differently if the currently open database is a shared library. 
On Windows systems, IDA will filter the displayed process list to just those 
processes that have the corresponding .dll file loaded. For example, if you 
are currently analyzing wininet.dll in IDA, then when you select Debugger�
Attach to Process, you will see only those processes that currently have 
wininet.dll loaded. On Linux and OS X systems, IDA does not have this 
filtering ability and displays every process to which you have the rights to 
attach.

As an alternative to attaching to an existing process, you may opt to launch 
a new process under debugger control. With no database open, a new pro-
cess can be launched via Debugger�Run. When a database is open, a new 
process can be launched via Debugger�Start Process or Debugger�Run 
to Cursor. Using the former causes the new process to execute until it hits a 
breakpoint (which you need to have set prior to choosing Debugger�Start 
Process) or until you elect to pause the process using Debugger�Pause Pro-
cess. Using Debugger�Run to Cursor automatically sets a breakpoint at the 
current cursor location prior to starting the new process. In this case, the new 
process will execute until the current cursor location is reached or until an 
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earlier breakpoint is hit. If execution never reaches the current cursor loca-
tion (or any other breakpoint), the process will continue to run until it is 
forcibly paused or terminated (Debugger�Terminate Process).

Launching a process under debugger control (as opposed to attaching 
to an existing process) is the only way to monitor every action the process 
takes. With breakpoints set prior to process initiation, it becomes possible 
to closely monitor a process’s entire startup sequence. Controlling startup 
sequences is particularly important in the case of programs that have been 
obfuscated, because you will often want to pause the process immediately 
after the de-obfuscation routines complete and before the process begins 
its normal operations.

Another advantage to launching a process from an open IDA database is 
that IDA performs its initial autoanalysis on the process image before launch-
ing the process. This results in significantly better disassembly quality over 
that attained when attaching the debugger to an existing process.

IDA’s debugger is capable of both local and remote debugging. For local 
debugging, you can only debug binaries that will run on your platform. There 
is no emulation layer that allows binaries from alternate platforms or CPU 
types to be executed within IDA’s local debugger. For remote debugging, 
IDA ships with a number of debugging servers including implementations 
for Windows 32/64, Windows CE/ARM, Mac OS X 32/64, Linux 32/64/
ARM, and Android. The debugging servers are intended to execute along-
side the binary that you intend to debug. Once you have a remote debugging 
server running, IDA can communicate with the server to launch or attach 
to a target process on the remote machine. For Windows CE ARM devices, 
IDA communicates with the remote device using ActiveSync and installs the 
debugging server remotely. IDA is also capable of communicating with the 
gdbserver1 component of the GNU Debugger2 (gdb) or with programs that 
are linked with a suitable gdb remote stub.3 Finally, for remote debugging on 
Symbian devices, you must install and configure Metrowerk’s App TRK4 in 
order for IDA to communicate with the device over a serial port. In any case, 
IDA is capable of acting as a debugger frontend only for processing running 
on x86, x64, MIPS, ARM, and PPC processors. Remote debugging is dis-
cussed in Chapter 26.

As with any other debugger, if you intend to use IDA’s debugger to 
launch new processes, the original executable file is required to be present 
on the debugging host, and the original binary will be executed with the 
full privileges of the user running IDA. In other words, it is not sufficient to 
have only an IDA database loaded with the binary you wish to debug. This is 
extremely important to understand if you intend to use the IDA debugger 
for malware analysis. You can easily infect the debugging target machine if 
you fail to properly control the malware sample. IDA attempts to warn you of 

1. See http://www.sourceware.org/gdb/current/onlinedocs/gdb/Server.html#Server.

2. See http://www.gnu.org/software/gdb/.

3. See http://www.sourceware.org/gdb/current/onlinedocs/gdb/Remote-Stub.html#Remote-Stub.

4. See http://www.tools.ext.nokia.com/agents/index.htm.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle



518 Chapter 24

this possibility anytime you select Debugger�Start Process (or Debugger�
Attach to process with an open database) by displaying a debugger warning 
message stating the following:

You are going to launch the debugger. Debugging a program 
means that its code will be executed on your system.

Be careful with malicious programs, viruses and trojans!

REMARK: if you select ‘No’, the debugger will be automatically 
disabled.

Are you sure you want to continue?

Selecting No in response to this warning causes the Debugger menu 
to be removed from the IDA menu bar. The Debugger menu will not be 
restored until you close the active database.

It is highly recommended that you perform any debugging of malicious 
software within a sandbox environment. In contrast, the x86 emulator plug-
in discussed in Chapter 21 neither requires that the original binary be present 
nor executes any of the binary’s instructions on the machine performing the 
emulation. 

Basic Debugger Displays

Regardless of how you happen to launch the debugger, once your process of 
interest has been paused under debugger control, IDA enters its debugger 
mode (as opposed to normal disassembly mode), and you are presented with 
several default displays. The default debugger display is shown in Figure 24-5.

Figure 24-5: IDA debugger display
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If you are accustomed to using other Windows debuggers such as 
OllyDbg5 or Immunity Debugger,6 one of your first thoughts might be that 
not much information is displayed on the screen. This is primarily a result 
of the fact that IDA defaults to a font size that is actually readable. If you find 
yourself missing the micro fonts used in other debuggers, you can easily 
change things via the Options�Font menu. You may also wish to make use 
of saved IDA desktops (Windows�Save Desktop) if you develop a fondness 
for a specific layout of your debugger windows.

As shown in the Figure 24-5, the debugger toolbar  replaces the dis-
assembly toolbar. A number of standard (from a debugging standpoint) 
tools are present, including process control tools and breakpoint manipula-
tion tools.

The IDA View-EIP  disassembly window is a default disassembly listing 
window when the debugger is active. It also happens to be synchronized with 
the current value of the instruction pointer register. If IDA detects that a reg-
ister points to a memory location within the disassembly window, the name 
of that register is displayed in the left margin, opposite the address to which 
the register points. In Figure 24-5, the location to which EIP points is flagged 
in IDA View-EIP (note that EDX also points to the same location in this exam-
ple). By default, IDA highlights breakpoints in red and the next instruction 
to be executed (the one to which the instruction pointer points) in blue. 
Debugger-related disassemblies are generated via the same disassembly pro-
cess used in standard disassembly mode. Thus, IDA’s debugger offers per-
haps the best disassembly capability to be found in a debugger. Additionally, 
if you launched the debugger from an open IDA database, IDA is able to 
characterize all of the executable content based on analysis performed prior 
to launching the debugger. IDA’s ability to disassemble any library code that 
has been loaded by the process will be somewhat more limited because IDA 
has not had a chance to analyze the associated .dll file prior to launching the 
debugger.

The Stack View  window is another standard disassembly view primarily 
used to display the data contents of the process’s runtime stack. All registers 
that point to stack locations are noted as such in the General Registers  
view (such as EBP in this case). Through the use of comments, IDA makes 
every attempt to provide context information for each data item on the stack. 
When the stack item is a memory address, IDA attempts to resolve the address 
to a function location (this helps highlight the location from which a func-
tion was called). When the stack item is a data pointer, a reference to the 
associated data item is displayed. The remaining default displays include the 
Hex view , which offers a standard hex dump of memory, the Modules  
view, which displays a list of modules currently loaded in the process image, 
and the Threads  view, which displays a list of threads in the current pro-
cess. Double-clicking any listed thread causes the IDA View-EIP disassembly 

5. See http://www.ollydbg.de/.

6. See http://www.immunityinc.com/products-immdbg.shtml.
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window to jump to the current instruction within the selected thread and 
updates the General Registers view to reflect the current values for registers 
within the selected thread.

The General Registers window (also shown in Figure 24-6) displays the 
current contents of the CPU’s general-purpose registers. Additional windows 
for displaying the contents of the CPU’s segment, floating-point, or MMX 
registers may be opened from the Debugger menu.

Figure 24-6: The General Registers display

Within the General Registers window, register contents are displayed to 
the right of the associated register name followed by a description of each 
register’s content. The CPU flag bits are displayed down the rightmost col-
umn. Right-clicking a register value or flag bit provides access to a Modify 
menu item, which allows you to change the contents of any register or CPU 
flag. Menu options offer quick access to zero a value, toggle a value, incre-
ment a value, or decrement a value. Toggling values is particularly useful for 
changing CPU flag bits. Right-clicking any register value also provides access 
to the Open Register Window menu item. Selecting Open Register Window 
causes IDA to open a new disassembly window centered at the memory loca-
tion held in the selected register. If you ever find that you have inadvertently 
closed either IDA View-EIP or IDA View-ESP, use the Open Register Window 
command on the appropriate register to reopen the lost window. If a register 
appears to point to a valid memory location, then the right-angle arrow con-
trol to the right of that register’s value will be active and highlighted in black. 
Clicking an active arrow opens a new disassembly view centered on the corre-
sponding memory location.

The Modules window displays a list of all executable files and shared 
libraries loaded into the process memory space. Double-clicking any module 
named in the list opens a list of symbols exported by that module. Figure 24-7 
shows an example of the contents of kernel32.dll. The symbol list provides an 
easy way to track down functions within loaded libraries if you wish to set 
breakpoints on entry to those functions.
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Figure 24-7: The Modules window with associated module 
contents

Additional debugger displays are accessible using various debugger 
menu selections. Displays pertaining to debugger operations will be discussed 
in the following section, “Process Control.” Along with the debugger-specific 
displays, all traditional IDA subviews, such as Functions and Segments, remain 
available via the Views�Open Subviews command.

Process Control

Perhaps the most important feature of any debugger is the ability to closely 
control—and modify, if desired—the behavior of the process being debugged. 
To that end, most debuggers offer commands that allow one or more instruc-
tions to be executed before returning control to the debugger. Such com-
mands are often used in conjunction with breakpoints that allow the user to 
specify that execution should be interrupted when a designated instruction 
is reached or when a specific condition is met.

Basic execution of a process under debugger control is accomplished 
through the use of various Step, Continue, and Run commands. Because 
they are used so frequently, it is helpful to become familiar with the toolbar 
buttons and hotkey sequences associated with these commands. Figure 24-8 
shows the toolbar buttons associated with execution of a process.

Figure 24-8: Debugger process control tools

The behavior of each of these commands is described in the following list:

Continue Resumes execution of a paused process. Execution continues 
until a breakpoint is hit, the user pauses or terminates execution, or the 
process terminates on its own.

Continue
F9

Terminate
CTRL-F2

Step Over
F8

Run to Cursor
F9

Pause Step Into
F7

Run Until Return
CTRL-F7
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Pause Pauses a running process.

Terminate Terminates a running process.

Step Into Executes the next instruction only. If the next instruction is a 
function call, breaks on the first instruction of the target function. Hence 
the name Step Into, since execution steps into any function being called.

Step Over Executes the next instruction only. If the next instruction is 
a function call, treats the call as a single instruction, breaking once the 
function returns. Hence the name Step Over, since stepping proceeds 
over functions rather than through them as with Step Into. Execution 
may be interrupted prior to completion of the function call if a break-
point is encountered. Step Over is very useful as a time-saver when the 
behavior of a function is well known and uninteresting.

Run Until Return Resumes execution of the current function and does 
not stop until that function returns (or a breakpoint is encountered). 
This operation is useful when you have seen enough of a function and 
you wish to get out of it or when you inadvertently step into a function 
that you meant to step over.

Run to Cursor Resumes execution of the process and stops when exe-
cution reaches the current cursor location (or a breakpoint is hit). This 
feature is useful for running through large blocks of code without the 
need to set a permanent breakpoint at each location where you wish to 
pause. Beware that the program may not pause if the cursor location is 
bypassed or otherwise never reached.

In addition to toolbar and hotkey access, all of the execution control 
commands are accessible via the Debugger menu. Regardless of whether a 
process pauses after a single step or hitting a breakpoint, each time the pro-
cess pauses, all debugger-related displays are updated to reflect the state of 
the process (CPU registers, flags, memory contents) at the time the process 
was paused.

Breakpoints
Breakpoints are a debugger feature that goes hand in hand with process exe-
cution and interruption (pausing). Breakpoints are set as a means of inter-
rupting program execution at very specific locations within the program. In 
a sense a breakpoint is a more permanent extension of the Run to Cursor 
concept in that once a breakpoint is set at a given address, execution will 
always be interrupted when execution reaches that location, regardless of 
whether the cursor remains positioned on that location or not. However, 
while there is only one cursor to which execution can run, it is possible to 
set many breakpoints all over a program, the arrival at any one of which will 
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interrupt execution of the program. Breakpoints are set in IDA by navigating 
to the location at which you want execution to pause and using the F2 hotkey 
(or right-clicking and selecting Add Breakpoint). Addresses at which break-
points have been set are highlighted with a red (by default) band across the 
entire disassembly line. A breakpoint may be removed by pressing F2 a sec-
ond time to toggle the breakpoint off. A complete list of breakpoints cur-
rently set within a program may be viewed via Debugger�Breakpoints�
Breakpoint List.

By default, IDA utilizes software breakpoints, which are implemented by 
replacing the opcode byte at the breakpoint address with a software break-
point instruction. For x86 binaries, this is the int 3 instruction, which uses 
opcode value 0xCC. Under normal circumstances, when a software breakpoint 
instruction is executed, the operating system transfers control to any debugger 
that may be monitoring the interrupted process. As discussed in Chapter 21, 
obfuscated code may take advantage of the behavior of software breakpoints 
in an attempt to hinder normal operation of any attached debugger.

As an alternative to software breakpoints, some CPUs (such as the x86, 
actually 386, and later) offer support for hardware-assisted breakpoints. Hard-
ware breakpoints are typically configured through the use of dedicated CPU 
registers. For x86 CPUs, these registers are called DR0–7 (debug registers 0 
through 7). A maximum of four hardware breakpoints can be specified using 
x86 registers DR0–3. The remaining x86 debug registers are used to specify 
additional constraints on each breakpoint. When a hardware breakpoint is 
enabled, there is no need to substitute a special instruction into the program 
being debugged. Instead, the CPU itself decides whether execution should 
be interrupted or not based on values contained within the debug registers.

Once a breakpoint has been set, it is possible to modify various aspects of 
its behavior. Beyond simply interrupting the process, debuggers often sup-
port the concept of conditional breakpoints, which allow users to specify a con-
dition that must be satisfied before the breakpoint is actually honored. When 
such a breakpoint is reached and the associated condition is not satisfied, the 
debugger automatically resumes execution of the program. The general idea 
is that the condition is expected to be satisfied at some point in the future, 
resulting in interruption of the program only when the condition you are 
interested in has been satisfied.

The IDA debugger supports both conditional and hardware breakpoints. 
In order to modify the default (unconditional, software-based) behavior of 
a breakpoint, you must edit a breakpoint after it has been set. In order to 
access the breakpoint-editing dialog, you must right-click an existing break-
point and select Edit Breakpoint. Figure 24-9 shows the resulting Breakpoint 
Settings dialog.
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Figure 24-9: The Breakpoint Settings dialog

The Location box indicates the address of the breakpoint being edited, 
while the Enabled checkbox indicates whether the breakpoint is currently 
active or not. A breakpoint that is disabled is not honored regardless of any 
condition that may be associated with the breakpoint. The Hardware check-
box is used to request that the breakpoint be implemented in hardware 
rather than software.

WARNING A word of caution concerning hardware breakpoints: Though the x86 only supports 
four hardware breakpoints at any given time, as of this writing (IDA version 6.1), IDA 
will happily allow you to designate more than four hardware breakpoints. However, 
only four of them will be honored. Any additional hardware breakpoints will be 
ignored.

When specifying a hardware breakpoint, you must use the Hardware 
breakpoint mode radio buttons to specify whether the breakpoint behavior 
is to break on execute, break on write, or break on read/write. The latter 
two categories (break on write and break on read/write) allow you to create 
breakpoints that trigger when a specific memory location (usually a data 
location) is accessed, regardless of what instruction happens to be executing 
at the time the access takes place. This is very useful if you are more inter-
ested in when your program accesses a piece of data than where the data is 
accessed from.

In addition to specifying a mode for your hardware breakpoint, you must 
specify a size. For execute breakpoints the size must be 1 byte. For write or 
read/write breakpoints, the size may be set to 1, 2, or 4 bytes. When the size 
is set to 2 bytes, the breakpoint’s address must be word aligned (a multiple 
of 2 bytes). Similarly, for 4-byte breakpoints, the breakpoint address must be 
double-word aligned (a multiple of 4 bytes). A hardware breakpoint’s size is 
combined with its address to form a range of bytes over which the breakpoint 
may be triggered. An example may help to explain. Consider a 4-byte write 
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breakpoint set at address 0804C834h. This breakpoint will be triggered by a 
1-byte write to 0804C837h, a 2-byte write to 0804C836h, and a 4-byte write to 
0804C832h, among others. In each of these cases, at least 1 byte in the range 
0804C834h0804C837h is written. More information on the behavior of x86 hard-
ware breakpoints can be found in the Intel 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.7

Conditional breakpoints are created by providing an expression in the 
Breakpoint Settings dialog’s Condition field. Conditional breakpoints are a 
debugger feature, not an instruction set or CPU feature. When a breakpoint 
is triggered, it is the debugger’s job to evaluate any associated conditional 
expression and determine whether the program should be paused (the con-
dition is met) or whether execution should simply continue (the condition is 
not met). Therefore, conditions may be specified for both software and hard-
ware breakpoints.

IDA breakpoint conditions are specified using IDC (not Python) expres-
sions. Expressions that evaluate to non-zero are considered true, satisfying 
the breakpoint condition and triggering the breakpoint. Expressions that 
evaluate to zero are considered false, failing to satisfy the breakpoint condi-
tion and failing to trigger the associated breakpoint. In order to assist in the 
creation of breakpoint expressions, IDA makes special register variables avail-
able within IDC (again, not Python) to provide direct access to register con-
tents in breakpoint expressions. These variables are named after the registers 
themselves and include EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFL, AX, BX, CX, DX, SI, 
DI, BP, SP, AL, AH, BL, BH, CL, CH, DL, and DH. These register variables are accessible 
only when the debugger is active.

Unfortunately, no variables exist that allow direct access to the proc-
essor flag bits. In order to access individual CPU flags, you need to call the 
GetRegValue function to obtain the value of the desired flag bit, such as CF. 
If you need a reminder regarding valid register and flag names, refer to the 
labels along the left and right edges of the General Registers window. A few 
example breakpoint expressions are shown here:

EAX == 100             // break if eax holds the value 100
ESI > EDI              // break if esi is greater than edi
Dword(EBP-20) == 10  // Read current stack frame (var_20) and compare to 10
GetRegValue("ZF")      // break if zero flag is set
EAX = 1                // Set EAX to 1, this also evaluates to true (non-zero)
EIP = 0x0804186C       // Change EIP, perhaps to bypass code

Two things to note about breakpoint expressions are the fact that IDC 
functions may be called to access process information (as long as the func-
tion returns a value) and the fact that assignment can be used as a means of 
modifying register values at specific locations during process execution. Ilfak 
himself demonstrated this technique as an example of overriding a function 
return value.8

7. See http://www.intel.com/products/processor/manuals/.

8. See http://www.hexblog.com/2005/11/simple_trick_to_hide_ida_debug.html and http://www
.hexblog.com/2005/11/stealth_plugin_1.html.
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The last breakpoint options that can be configured in the Breakpoint 
Settings dialog are grouped into the Actions box on the right side of the dia-
log. The Break checkbox specifies whether program execution should actually 
be paused (assuming any associated condition is true) when the breakpoint 
is reached. It may seem unusual to create a breakpoint that doesn’t break, 
but this is actually a useful feature if all you want to do is modify a specific 
memory or register value each time an instruction is reached without requir-
ing the program to be paused at the same time. Selecting the Trace check-
box causes a trace event to be logged each time the breakpoint is hit.

Tracing
Tracing offers a means of logging specific events that occur while a process is 
executing. Trace events are logged to a fixed-size trace buffer and may option-
ally be logged to a trace file. Two styles of tracing are available: instruction 
tracing and function tracing. When instruction tracing is enabled (Debugger�
Tracing�Instruction Tracing), IDA records the address, the instruction, and 
the values of any registers (other than EIP) that were changed by the instruc-
tion. Instruction tracing can slow down a debugged process considerably, 
because the debugger must single-step the process in order to monitor and 
record all register values. Function tracing (Debugger�Tracing�Function 
Tracing) is a subset of instruction tracing in which only function calls (and 
optionally returns) are logged. No register values are logged for function 
trace events.

Three types of individual trace events are also available: write traces, 
read/write traces, and execution traces. As their names imply, each allows 
logging of a trace event when a specific action occurs at a designated address. 
Each of these individual traces is implemented using nonbreaking breakpoints 
with the trace option set. Write and read/write traces are implemented using 
hardware breakpoints and thus fall under the same restrictions mentioned 
previously for hardware breakpoints, the most significant being that no more 
than four hardware-assisted breakpoints or traces may be active at any given 
time. By default, execution traces are implemented using software break-
points, and thus there is no limit on the number of execution traces that can 
be set within a program.

Figure 24-10 shows the Tracing Options (Debugger�Tracing�Tracing 
Options) dialog used to configure the debugger’s tracing operations.

Options specified here apply to function and instruction tracing only. 
These options have no effect on individual trace events. The Trace buffer 
size option specifies the maximum number of trace events that may be dis-
played at any given time. For a given buffer size n, only the n most recent 
trace events are displayed. Naming a log file causes all trace events to be 
appended to the named file. A file dialog is not offered when specifying a 
log file, so you must specify the complete path to the log file yourself. An IDC 
expression may be entered as a stop condition. The condition is evaluated 
prior to tracing through each instruction. If the condition evaluates to true, 
execution is immediately paused. The effect of this expression is to act as a 
conditional breakpoint that is not tied to any specific location.
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Figure 24-10: The Tracing Options dialog

The Mark consecutive traced events with same IP option, when checked, 
causes consecutive trace events originating from the same instruction (IP 
here means Instruction Pointer) to be flagged with an equal sign. An example 
in which consecutive events can originate at the same instruction address 
occurs when the REP9 prefix is used in x86 programs. In order for an instruc-
tion trace to show each repetition at the same instruction address, the Log 
if same IP option must also be selected. Without this option selected, an 
instruction prefixed with REP is listed only once each time it is encountered. 
The following listing shows a partial instruction trace using the default trace 
settings:

 Thread   Address             Instruction    Result
 ------   -------             -----------    ------

 00000150 .text:sub_401320+17 rep movsb      ECX=00000000 ESI=0022FE2C EDI=0022FCF4
 00000150 .text:sub_401320+19 pop esi        ESI=00000000 ESP=0022FCE4

Note that the movsb instruction  is listed only once.
In the following listing, Log if same IP has been selected, resulting in 

each iteration of the rep loop being logged:

Thread   Address             Instruction   Result
------   -------             -----------   ------
000012AC .text:sub_401320+17 rep movsb     ECX=0000000B ESI=0022FE21 EDI=0022FCE9 EFL=00010206 RF=1
000012AC .text:sub_401320+17 rep movsb     ECX=0000000A ESI=0022FE22 EDI=0022FCEA
000012AC .text:sub_401320+17 rep movsb     ECX=00000009 ESI=0022FE23 EDI=0022FCEB
000012AC .text:sub_401320+17 rep movsb     ECX=00000008 ESI=0022FE24 EDI=0022FCEC
000012AC .text:sub_401320+17 rep movsb     ECX=00000007 ESI=0022FE25 EDI=0022FCED
000012AC .text:sub_401320+17 rep movsb     ECX=00000006 ESI=0022FE26 EDI=0022FCEE
000012AC .text:sub_401320+17 rep movsb     ECX=00000005 ESI=0022FE27 EDI=0022FCEF
000012AC .text:sub_401320+17 rep movsb     ECX=00000004 ESI=0022FE28 EDI=0022FCF0
000012AC .text:sub_401320+17 rep movsb     ECX=00000003 ESI=0022FE29 EDI=0022FCF1

9. The REP prefix is an instruction modifier that causes certain x86 string instructions such as 
movs and scas to be repeated based on a count contained in the ECX register.
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000012AC .text:sub_401320+17 rep movsb     ECX=00000002 ESI=0022FE2A EDI=0022FCF2
000012AC .text:sub_401320+17 rep movsb     ECX=00000001 ESI=0022FE2B EDI=0022FCF3 
000012AC .text:sub_401320+17 rep movsb     ECX=00000000 ESI=0022FE2C EDI=0022FCF4 EFL=00000206 RF=0
000012AC .text:sub_401320+19 pop esi       ESI=00000000 ESP=0022FCE4

Finally, in the following listing, the Mark consecutive traced events with 
same IP option has been enabled, resulting in special markings that high-
light the fact that the instruction pointer has not changed from one instruc-
tion to the next:

Thread   Address             Instruction  Result 
------   -------             -----------  ------  
000017AC .text:sub_401320+17 rep movsb    ECX=0000000B ESI=0022FE21 EDI=0022FCE9 EFL=00010206 RF=1
=        =                   =            ECX=0000000A ESI=0022FE22 EDI=0022FCEA
=        =                   =            ECX=00000009 ESI=0022FE23 EDI=0022FCEB 
=        =                   =            ECX=00000008 ESI=0022FE24 EDI=0022FCEC
=        =                   =            ECX=00000007 ESI=0022FE25 EDI=0022FCED
=        =                   =            ECX=00000006 ESI=0022FE26 EDI=0022FCEE
=        =                   =            ECX=00000005 ESI=0022FE27 EDI=0022FCEF 
=        =                   =            ECX=00000004 ESI=0022FE28 EDI=0022FCF0 
=        =                   =            ECX=00000003 ESI=0022FE29 EDI=0022FCF1 
=        =                   =            ECX=00000002 ESI=0022FE2A EDI=0022FCF2 
=        =                   =            ECX=00000001 ESI=0022FE2B EDI=0022FCF3 
=        =                   =            ECX=00000000 ESI=0022FE2C EDI=0022FCF4 EFL=00000206 RF=0
000017AC .text:sub_401320+19 pop esi      ESI=00000000 ESP=0022FCE4

The last two options we will mention concerning tracing are Trace over 
debugger segments and Trace over library functions. When Trace over debug-
ger segments is selected, instruction and function call tracing is temporarily 
disabled anytime execution proceeds to a program segment outside any of 
the file segments originally loaded into IDA. The most common example of 
this is a call to a shared library function. Selecting Trace over library func-
tions temporarily disables function and instruction tracing anytime execu-
tion enters a function that IDA has identified as a library function (perhaps 
via FLIRT signature matching). Library functions linked into a binary should 
not be confused with library functions that a binary accesses via a shared library 
file such as a DLL. Both of these options are enabled by default, resulting in 
better performance while tracing (because the debugger does not need to 
step into library code) as well as a substantial reduction in the number of 
trace events generated, since instruction traces through library code can 
rapidly fill the trace buffer.

Stack Traces
A stack trace is a display of the current call stack, or sequence of function calls 
that have been made in order for execution to reach a particular location 
within a binary. Figure 24-11 shows a sample stack trace generated using the 
Debugger�Stack Trace command.
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Figure 24-11: A sample stack trace

The top line in a stack trace lists the name of the function currently exe-
cuting. The second line indicates the function that called the current func-
tion and the address from which that call was made. Successive lines indicate 
the point from which each function was called. A debugger is able to create a 
stack trace display by walking the stack and parsing each stack frame that it 
encounters, and it typically relies on the contents of the frame pointer regis-
ter (EBP for x86) to locate the base of each stack frame. When a stack frame 
is located, the debugger can extract a pointer to the next stack frame (the 
saved frame pointer) as well as the saved return address, which is used to 
locate the call instruction used to invoke the current function. IDA’s debug-
ger cannot trace through stack frames that do not utilize EBP as a frame 
pointer. At the function (rather than individual instruction) level, stack 
traces are useful for answering the question, “How did I get here?” or, more 
correctly, “What sequence of function calls led to this particular location?”

Watches
While debugging a process, you may wish to constantly monitor the value 
contained in one or more variables. Rather than requiring you to navigate 
to the desired memory locations each time the process is paused, many debug-
gers allow you to specify lists of memory locations whose values should be dis-
played each time the process is stopped in the debugger. Such lists are called 
watch lists, because they allow you to watch as the contents of designated 
memory locations change during program execution. Watch lists are simply 
a navigational convenience; they do not cause execution to pause like a 
breakpoint.

Because they are focused on data, watch points (addresses designated 
to be watched) are most commonly set in the stack, heap, or data sections 
of a binary. Watches are set in the IDA debugger by right-clicking a memory 
item of interest and selecting Add Watch. Determining exactly which address 
to set a watch on may require some thought. Determining the address of a 
global variable is somewhat less challenging than determining the address 
of a local variable because global variables are allocated and assigned fixed 
addresses at compile time. Local variables, on the other hand, don’t exist 
until runtime, and even then they exist only once the function in which they 
are declared has been called. With the debugger active, once you have 
stepped into a function, IDA is capable of reporting the addresses of local 
variables within that function. Figure 24-12 shows the result of mousing over 
a local variable named arg_0 (actually a parameter passed into the function).
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Figure 24-12: Debugger resolution of a local variable address

Double-clicking a local variable within an active function causes IDA to 
jump the main IDA View window to the address of that local variable. Having 
arrived at the variable’s address, you may then add a watch on that address 
using the Add Watch context-sensitive menu option, though you will need 
to manually enter the address into the Watch Address dialog. If, instead, 
you take the time to name the memory location, IDA will automatically add 
a watch if you apply the same menu option to the name rather than the 
address.

You can access a list of all watches currently in effect via Debugger�
Watches�Watch List. You can delete individual watches by highlighting the 
desired watch in the watch list and pressing DELETE.

Automating Debugger Tasks

In Chapters 15 through 19, we covered the basics of IDA scripting and the 
IDA SDK and demonstrated the usefulness of these capabilities during static 
analysis of binaries. Launching a process and working in the more dynamic 
environment of a debugger doesn’t make scripting and plug-ins any less 
useful. Interesting uses for the automation provided by scripts and plug-ins 
include analyzing runtime data available while a process is being debugged, 
implementing complex breakpoint conditions, and implementing measures 
to subvert anti-debugging techniques.

Scripting Debugger Actions
All of the IDA scripting capabilities discussed in Chapter 15 continue to be 
accessible when you are using the IDA debugger. Scripts may be launched 
from the File menu, associated with hotkeys, and invoked from the IDA 
scripting command line. In addition, user-created IDC functions may be ref-
erenced from breakpoint conditions and tracing termination expressions.

Basic scripting functions offer the capability to set, modify, and enumer-
ate breakpoints and the ability to read and write register and memory values. 
Memory access is provided by the DbgByte, PatchDbgByte, DbgWord, PatchDbgWord, 
DbgDword, and PatchDbgDword functions (analogous to the Byte, Word, Dword, and 
PatchXXX functions described in Chapter 15). Register and breakpoint manip-
ulation is made possible by the following functions (please see the IDA help 
file for a complete list).

long GetRegValue(string reg)

Returns the value of the named register, such as EAX, as discussed previ-
ously. In IDC only, register values may also be easily accessed by using 
the desired register’s name as a variable within an IDC expression.
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bool SetRegValue(number val, string name)

Sets the value of the named register, such as EAX. If you are using IDC, 
register values may also be modified directly by using the desired register 
name on the left side of an assignment statement.

bool AddBpt(long addr)

Adds a software breakpoint at the indicated address.

bool AddBptEx(long addr, long size, long type)

Adds a breakpoint of the specified size and type at the indicated address. 
Type should be one of the BPT_xxx constants described in idc.idc or the 
IDA help file.

bool DelBpt(long addr)

Deletes a breakpoint at the specified address.

long GetBptQty()

Returns the number of breakpoints set within a program.

long GetBptEA(long bpt_num)

Returns the address at which the indicated breakpoint is set.

long/string GetBptAttr(long addr, number attr)

Returns an attribute associated with the breakpoint at the indicated 
address. The return value may be a number or a string depending on 
which attribute value has been requested. Attributes are specified using 
one of the BPTATTR_xxx values described in idc.idc or the IDA help file.

bool SetBptAttr(long addr, number attr, long value)

Sets the specified attribute of the specified breakpoint to the specified 
value. Do not use this function to set breakpoint condition expressions 
(use SetBptCnd instead).

bool SetBptCnd(long addr, string cond)

Sets the breakpoint condition to the provided conditional expression, 
which must be a valid IDC expression.

long CheckBpt(long addr)

Gets the breakpoint status at the specified address. Return values indi-
cate whether there is no breakpoint, the breakpoint is disabled, the 
breakpoint is enabled, or the breakpoint is active. An active breakpoint 
is a breakpoint that is enabled while the debugger is also active.

The following script demonstrates how to install a custom IDC breakpoint-
handling function at the current cursor location:

#include <idc.idc>
/*
 * The following should return 1 to break, and 0 to continue execution.
 */
static my_breakpoint_condition() {
   return AskYN(1, "my_breakpoint_condition activated, break now?") == 1;
}
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/*
 * This function is required to register my_breakpoint_condition
 * as a breakpoint conditional expression
 */
static main() {
   auto addr;
   addr = ScreenEA();
   AddBpt(addr);
   SetBptCnd(addr, "my_breakpoint_condition()");
}

The complexity of my_breakpoint_condition is entirely up to you. In this 
example, each time the breakpoint is hit, a dialog will be displayed asking the 
user if she would like to continue execution of the process or pause at the 
current location. The value returned by my_breakpoint_condition is used by 
the debugger to determine whether the breakpoint should be honored or 
ignored.

Programmatic control of the debugger is possible from both the SDK 
and through the use of scripts. Within the SDK, IDA utilizes an event-driven 
model and provides callback notifications to plug-ins when specific debugger 
events occur. Unfortunately, IDA’s scripting capabilities don’t facilitate the 
use of an event-driven paradigm within scripts. As a result, Hex-Rays intro-
duced a number of scripting functions that allow for synchronous control of 
the debugger from within scripts. The basic approach required to drive the 
debugger using a script is to initiate a debugger action and then wait for the 
corresponding debugger event code. Keep in mind that a call to a synchro-
nous debugger function (which is all you can do in a script) blocks all other 
IDA operations until the call completes. The following list details several of 
the debugging extensions available for scripts:

long GetDebuggerEvent(long wait_evt, long timeout)

Waits for a debugger event (as specified by wait_evt) to take place within 
the specified number of seconds (–1 waits forever). Returns an event type 
code that indicates the type of event that was received. Specify wait_evt 
using a combination of one or more WFNE_xxx (WFNE stands for Wait For 
Next Event) flags. Possible return values are documented in the IDA 
help file.

bool RunTo(long addr)
Runs the process until the specified location is reached or until a break-
point is hit.

bool StepInto()

Steps the process one instruction, stepping into any function calls.

bool StepOver()

Steps the process one instruction, stepping over any function calls. This 
call may terminate early if a breakpoint is hit.

bool StepUntilRet()

Runs until the current function call returns or until a breakpoint is hit.
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bool EnableTracing(long trace_level, long enable)

Enables (or disables) the generation of trace events. The trace_level 
parameter should be set to one of the TRACE_xxx constants defined in 
idc.idc.

long GetEventXXX()
A number of functions are available for retrieving information related to 
the current debug event. Some of these functions are valid only for spe-
cific event types. You should test the return value of GetDebuggerEvent in 
order to make sure that a particular GetEventXXX function is valid.

GetDebuggerEvent must be called after each function that causes the pro-
cess to execute in order to retrieve the debugger’s event code. Failure to do 
so may prevent follow-up attempts to step or run the process. For example, 
the following code fragment will step the debugger only one time because 
GetDebuggerEvent does not get called to clear the last event type in between 
invocations of StepOver.

StepOver();
StepOver();    //this and all subsequent calls will fail
StepOver();
StepOver();

The proper way to perform an execution action is to follow up each call 
with a call to GetDebuggerEvent, as shown in the following example:

StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);

The calls to GetDebuggerEvent allow execution to continue even if you 
choose to ignore the return value from GetDebuggerEvent. The event type 
WFNE_SUSP indicates that we wish to wait for an event that results in suspension 
of the debugged process, such as an exception or a breakpoint. You may 
have noticed that there is no function that simply resumes execution of a sus-
pended process.10 However, it is possible to achieve the same effect by using 
the WFNE_CONT flag in a call to GetDebuggerEvent, as shown here:

GetDebuggerEvent(WFNE_SUSP | WFNE_CONT, -1);

This particular call waits for the next available suspend event after first 
resuming execution by continuing the process from the current instruction.

10. In reality, there is a macro named ResumeProcess that is defined as 
GetDebuggerEvent(WFNE_CONT|WFNE_NOWAIT, 0).
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Additional functions are provided for automatically launching the 
debugger and attaching to running processes. See IDA’s help file for more 
information on these functions.

An example of a simple debugger script for collecting statistics on the 
addresses of each executed instruction (provided the debugger is enabled) 
is shown here:

static main() {
   auto ca, code, addr, count, idx;

 ca = GetArrayId("stats");
   if (ca != -1) {
      DeleteArray(ca);
   }
   ca = CreateArray("stats");

   EnableTracing(TRACE_STEP, 1);
 for (code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1); code > 0;
          code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)) {

      addr = GetEventEa();
   count = GetArrayElement(AR_LONG, ca, addr) + 1;
     SetArrayLong(ca, addr, count);
   }
   EnableTracing(TRACE_STEP, 0);

 for (idx = GetFirstIndex(AR_LONG, ca);
          idx != BADADDR; 
          idx = GetNextIndex(AR_LONG, ca, idx)) {
      count = GetArrayElement(AR_LONG, ca, idx);
      Message("%x: %d\n", idx, count);
   }

   DeleteArray(ca);
}

The script begins  by testing for the presence of a global array named 
stats. If one is found, the array is removed and re-created so that we can start 
with an empty array. Next , single-step tracing is enabled before entering a 
loop  to drive the single-stepping process. Each time a debug event is gen-
erated, the address of the associated event is retrieved , the current count 
for the associated address is retrieved from the global array and incremented 

, and the array is updated with the new count . Note that the instruction 
pointer is used as the index into the sparse global array, which saves time look-
ing up the address in some other form of data structure. Once the process 
completes, a second loop  is used to retrieve and print all values from array 
locations that have valid values. In this case, the only array indexes that will 
have valid values represent addresses from which instructions were fetched. 
The script finishes off  by deleting the global array that was used to gather 
the statistics. Example output from this script is shown here:

401028: 1
40102b: 1
40102e: 2
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401031: 2
401034: 2
401036: 1
40103b: 1

A slight alteration of the preceding example can be used to gather statis-
tics on what types of instructions are executed during the lifetime of a pro-
cess. The following example shows the modifications required in the first 
loop to gather instruction-type data rather than address data:

   for (code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1); code > 0;
        code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)) {
      addr = GetEventEa();

 mnem = GetMnem(addr);
 count = GetHashLong(ht, mnem) + 1;
 SetHashLong(ht, mnem, count);
   }

Rather than attempting to classify individual opcodes, we choose to 
group instructions by mnemonics . Because mnemonics are strings, we 
make use of the hash-table feature of global arrays to retrieve the current 
count associated with a given mnemonic  and save the updated count  
back into the correct hash table entry. Sample output from this modified 
script is shown here:

add:   18
and:   2
call:  46
cmp:   16
dec:   1
imul:  2
jge:   2
jmp:   5
jnz:   7
js:    1
jz:    5
lea:   4
mov:   56
pop:   25
push:  59
retn:  19
sar:   2
setnz: 3
test:  3
xor:   7

In Chapter 25 we will revisit the use of debugger-interaction capabilities 
as a means to assist in de-obfuscating binaries.
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Automating Debugger Actions with IDA Plug-ins
In Chapter 16 you learned that IDA’s SDK offers significant power for devel-
oping a variety of compiled extensions that can be integrated into IDA and 
that have complete access to the IDA API. The IDA API offers a superset of 
all the capabilities available in IDC, and the debugging extensions are no 
exception. Debugger extensions to the API are declared in <SDKDIR>/
dbg.hpp and include C++ counterparts to all of the IDC functions discussed 
thus far, along with a complete asynchronous debugger interface capability.

For asynchronous interaction, plug-ins gain access to debugger notifica-
tions by hooking the HT_DBG notification type (see loader.hpp). Debugger noti-
fications are declared in the dbg_notification_t enum found in dbg.hpp.

Within the debugger API, commands for interacting with the debugger 
are typically defined in pairs, with one function used for synchronous inter-
action (as with scripts) and the second function used for asynchronous inter-
action. Generically, the synchronous form of a function is named COMMAND(), 
and its asynchronous counterpart is named request_COMMAND(). The request_XXX 
versions are used to queue debugger actions for later processing. Once you 
finish queuing asynchronous requests, you must invoke the run_requests func-
tion to initiate processing of your request queue. As your requests are pro-
cessed, debugger notifications will be delivered to any callback functions that 
you may have registered via hook_to_notification_point.

Using asynchronous notifications, we can develop an asynchronous ver-
sion of the address-counting script from the previous section. The first task is 
to make sure that we hook and unhook debugger notifications. We will do 
this in the plug-in’s init and term methods, as shown here:

//A netnode to gather stats into
 netnode stats("$ stats", 0, true);

int idaapi init(void) {
   hook_to_notification_point(HT_DBG, dbg_hook, NULL);
   return PLUGIN_KEEP;
}

void idaapi term(void) {
   unhook_from_notification_point(HT_DBG, dbg_hook, NULL);
}

Note that we have also elected to declare a global netnode , which we 
will use to collect statistics. Next we consider what we want the plug-in to do 
when it is activated via its assigned hotkey. Our example plug-in run function 
is shown here:

void idaapi run(int arg) {
   stats.altdel();   //clear any existing stats

 request_enable_step_trace();
   request_step_until_ret();
 run_requests();
}
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Since we are using asynchronous techniques in this example, we must 
first submit a request to enable step tracing  and then submit a request to 
resume execution of the process being debugged. For the sake of simplicity, 
we will gather statistics on the current function only, so we will issue a request 
to run until the current function returns . With our requests properly 
queued, we kick things off by invoking run_requests to process the current 
request queue .

All that remains is to process the notifications that we expect to receive 
by creating our HT_DBG callback function. A simple callback that processes 
only two messages is shown here:

int idaapi dbg_hook(void *user_data, int notification_code, va_list va) {
   switch (notification_code) {
      case dbg_trace:  //notification arguments are detailed in dbg.hpp
         va_arg(va, thid_t);
        ea_t ea = va_arg(va, ea_t);
         //increment the count for this address
 stats.altset(ea, stats.altval(ea) + 1);
         return 0;
      case dbg_step_until_ret:
         //print results
         for (nodeidx_t i = stats.alt1st(); i != BADNODE; i = stats.altnxt(i)) {
             msg("%x: %d\n", i, stats.altval(i));

}
         //delete the netnode and stop tracing

         stats.kill();
 request_disable_step_trace();
 run_requests();
         break;
   }
}

The dbg_trace notification  will be received for each instruction that 
executes until we turn tracing off. When a trace notification is received, the 
address of the trace point is retrieved from the args list  and then used to 
update the appropriate netnode array index . The dbg_step_until_ret notifi-
cation  is sent once the process hits the return statement to leave the func-
tion in which we started. This notification is our signal that we should stop 
tracing and print any statistics we have gathered. A loop is used  to iterate 
through all valid index values of the stats netnode before destroying the net-
node  and requesting that step tracing be disabled . Since this example 
uses asynchronous commands, the request to disable tracing is added to the 
queue, which means we have to issue run_requests  in order for the queue to 
be processed. An important warning about synchronous versus asynchronous 
interaction with the debugger is that you should never call the synchronous 
version of a function while actively processing an asynchronous notification 
message.

Synchronous interaction with the debugger using the SDK is done in 
a manner very similar to scripting the debugger. As with many of the SDK 
functions we have seen in previous chapters, the names of debugger-related 
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functions typically do not match the names of related scripting functions, so 
you may need to spend some time combing through dbg.hpp in order to find 
the functions you are looking for. The biggest disparity in names between 
scripting and the SDK is the SDK’s version of GetDebuggerEvent, which is called 
wait_for_next_event in the SDK. The other major difference between script 
functions and the SDK is that variables corresponding to the CPU registers 
are not automatically declared for you within the SDK. In order to access the 
values of CPU registers from the SDK, you must use the get_reg_val and 
set_reg_val functions to read and write registers, respectively.

Summary

IDA may not have the largest share of the debugger market, but its debugger 
is powerful and integrates seamlessly with the disassembly side of IDA. While 
the debugger’s user interface, like that of any debugger, requires some initial 
getting used to, it offers all of the fundamental features that users require in a 
basic debugger. Strong points include scripting and plug-in capabilities along 
with the familiar user interface of IDA’s disassembly displays and the power of 
its analysis capabilities. Together the unified disassembler/debugger combi-
nation provides a solid tool for performing static analysis, dynamic analysis, 
or a combination of both.
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