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V A R I A B L E S  I N  A  H I G H - L E V E L  

L A N G U A G E

This chapter will explore the low-level 
implementation of variables found in high-

level languages. Although assembly language 
programmers usually have a good feel for the 

connection between variables and memory locations, 
high-level languages add sufficient abstraction to 
obscure this relationship. This chapter will cover 
the following topics:
� The runtime memory organization typical for most compilers

� How the compiler breaks up memory into different sections and how 
the compiler places variables into each of those sections

� The attributes that differentiate variables from other objects

� The difference between static, automatic, and dynamic variables

� How compilers organize automatic variables in a stack frame

� The primitive data types that hardware provides for variables

� How machine instructions encode the address of a variable
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When you finish reading this chapter, you should have a good under-
standing of how to declare variables in your program to use the least amount 
of memory and produce fast-running code.

8.1 Runtime Memory Organization

An operating system like Linux or Windows puts different types of data into 
different areas (sections or segments) of main memory. Although it is possible 
to control the memory organization by running a linker and specifying 
various command-line parameters, by default Windows loads a typical 
program into memory using the organization appearing in Figure 8-1 
(Linux is similar, although it rearranges some of the sections).

Figure 8-1: Typical runtime memory organization for Windows

The operating system reserves the lowest memory addresses. Generally, 
your application cannot access data (or execute instructions) at the lowest 
addresses in memory. One reason the OS reserves this space is to help detect 
NULL pointer references. Programmers often initialize pointers with NULL 
(zero) to indicate that the pointer is not valid. Should you attempt to access 
memory location zero under such an operating system, the OS will generate 
a general protection fault to indicate that you’ve accessed an invalid memory 
location. 

The remaining six areas in the memory map hold different types of data 
associated with your program. These sections of memory include the stack 
section, the heap section, the code section, the constant section, the initial-
ized static-object section, and the uninitialized data section. Each of these 
memory sections corresponds to some type of data you can create in your 
programs. 

Most of the time, a given application can live with the default layouts 
chosen for these sections by the compiler and linker/loader. In some cases, 
however, knowing the memory layout can allow you to develop shorter pro-
grams. For example, because the code section is usually read-only, it might 
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be possible to combine the code, constant, and read-only data sections into a 
single section, thereby saving any padding space that the compiler/linker 
may place between these sections. Although for large applications this is 
probably insignificant, for small programs it can have a big impact on the 
size of the executable. 

The following sections discuss each of these sections in detail.

8.1.1 The Code, Constant, and Read-Only Sections
The code section in memory contains the machine instructions for a pro-
gram. Your compiler translates each statement you write into a sequence of 
one or more byte values (machine instruction opcodes). The CPU interprets 
these opcode values during program execution.

Most compilers also attach a program’s read-only data and constant pool
(constant table) sections to the code section because, like the code instruc-
tions, the read-only data is already write-protected. However, it is perfectly 
possible under Windows, Linux, and many other operating systems to create 
a separate section in the executable file and mark it as read-only. As a result, 
some compilers do support a separate read-only data section, and some com-
pilers even create a different section (the constant pool) for the constants that 
the compiler emits. Such sections contain initialized data, tables, and other 
objects that the program should not change during program execution.

Many compilers will generate multiple code sections and leave it up to 
the linker to combine those sections into a single code segment prior to exe-
cution. To understand why a compiler might do this, consider the following 
short Pascal code fragment:

    if( SomeBooleanExpression ) then begin

        << Some code that executes 99.9% of the time >>

    end

    else begin

        << Some code that executes 0.1% of the time >>

    end;

Without worrying about how it does so, assume that the compiler can 
figure out that the then section of this if statement executes far more often 
than the else section. An assembly programmer, wanting to write the fastest 
possible code, might encode this sequence as follows:

    << evaluate Boolean expression, leave True/False in EAX >>

    test( eax, eax );

    jz exprWasFalse;

    << Some code that executes 99.9% of the time >>

rtnLabel:

    << Code normally following the last END in the 

               Pascal example >>
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        .

        .

        .

// somewhere else in the code, not in the direct execution path

// of the above:

exprWasFalse:

    << Some code that executes 0.1% of the time >>

    jmp rtnLabel;

This assembly code might seem a bit convoluted, but keep in mind 
that any control transfer instruction is probably going to consume a lot of 
time because of pipelined operation on modern CPUs (see Write Great Code, 
Volume 1, for the details). Code that executes without branching (or that falls 
straight through) executes the fastest. In the previous example, the common 
case falls straight through 99.9 percent of the time. The rare case winds up 
executing two branches (one to transfer to the else section and one to return 
back to the normal control flow). But because this code rarely executes, it 
can afford to take longer to execute.

Many compilers use a little trick to move sections of code around 
like this in the machine code they generate—they simply emit the 
code in a sequential fashion, but they place the else code in a separate 
section. Here’s some MASM code that demonstrates this principle in 
action:

    << evaluate Boolean expression, leave True/False in EAX >>

    test eax, eax 

    jz exprWasFalse

    << Some code that executes 99.9% of the time >>

alternateCode segment

    << Some code that executes 0.1% of the time >>

    jmp rtnLabel;

alternateCode ends

rtnLabel:

    << Code normally following the last END in the Pascal example >>

Even though the else section code appears to immediately follow the then
section’s code, placing it in a different segment tells the assembler/linker to 
move this code and combine it with other code in the alternateCode segment. 
This little trick, which relies upon the assembler or linker to do the code 
movement, can simplify  HLL compilers. GCC, for example, uses this trick to 
move code around in the assembly language file it emits. As a result, you’ll 
see this trick being used on occasion. Therefore, expect some compilers to 
produce multiple code segments.
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8.1.2 The Static Variables Section
Many languages provide the ability to initialize a global variable during the 
compilation phase. For example, in the C/C++ language, you could use 
statements like the following to provide initial values for these static objects:

static int i = 10;
static char ch[] = ( 'a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler will place these initial 
values in the executable file. When you execute the application, the oper-
ating system will load the portion of the executable file that contains these 
static variables into memory so that the values appear at the addresses asso-
ciated those variables. Therefore, when the program first begins execution, 
i and ch will magically have these values bound to them.

The static section is often called the DATA or _DATA segment in the assembly 
listings that most compilers produce. As an example, consider the following 
C code fragment and the TASM assembly code that the Borland C++ com-
piler produces for it:

#include <stdlib.h>

#include <stdio.h>

static char *c = NULL;

static int i = 0;

static int j = 1;

static double array[4] = {0.0, 1.0, 2.0, 3.0};

int main( void )

{

      .

      .

      .

And here’s the assembly code emitted by the Borland C++ compiler for 
the declarations in this C example:

_DATA   segment dword public use32 'DATA'

        align   4

_c      label   dword

        dd      0

        align   4

_i      label   dword

        dd      0

        align   4

_j      label   dword

        dd      1

        align   4
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_array  label   qword

        db        0,0,0,0,0,0,0,0

        db        0,0,0,0,0,0,240,63

        db        0,0,0,0,0,0,0,64

        db        0,0,0,0,0,0,8,64

_DATA   ends

As you can see in this example, Borland’s C++ compiler places these 
variables in the _DATA segment.

8.1.3 The BSS Section
Most operating systems will zero out memory prior to program execution. 
Therefore, if an initial value of zero is suitable, you don’t need to waste any 
disk space with the static object’s initial value. Generally, however, compilers 
treat uninitialized variables in a static section as though you’ve initialized 
them with zero, thereby consuming disk space. Some operating systems 
provide another section type, the BSS section, to avoid this waste of disk 
space.

The BSS section is where compilers typically put static objects that don’t 
have an explicit initial value. BSS stands for block started by a symbol, and it is 
an old assembly language term describing a pseudo-opcode you would use to 
allocate storage for an uninitialized static array. In modern operating systems 
like Windows and Linux, the OS allows the compiler/linker to put all unini-
tialized variables into a BSS section that simply tells the OS how many bytes 
to set aside for that section. When the operating system loads the program 
into memory, it reserves sufficient memory for all the objects in the BSS sec-
tion and fills this range of memory with zeros. It is important to note that the 
BSS section in the executable file doesn’t contain any actual data. For this 
reason, programs that declare large uninitialized static arrays in a BSS sec-
tion will consume less disk space. The following is the C/C++ example from 
the previous section, modified to remove the initializers so that the compiler 
will place the variables in the BSS section:

#include <stdlib.h>

#include <stdio.h>

static char *c;

static int i;

static int j;

static double array[4];

int main( void )

{

      .

      .

      .
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Here is the Borland C++ output:

_BSS    segment dword public use32 'BSS'

        align   4

_c      label   dword

        db      4       dup(?)

        align   4

_i      label   dword

        db      4       dup(?)

        align   4

_j      label   dword

        db      4       dup(?)

        align   4

_array  label   qword

        db      32      dup(?)

_BSS    ends

Not all compilers use a BSS section. Many Microsoft languages and linkers, 
for example, simply combine the uninitialized objects with the static/data 
section and explicitly give them an initial value of zero. Although Microsoft 
claims that this scheme is faster, it certainly makes executable files larger if 
your code has large, uninitialized arrays (because each byte of the array winds 
up in the executable file, something that would not happen if the compiler 
were to place the array in a BSS section). Note, however, that this is a default 
condition and you can change this by setting the appropriate linker flags.

8.1.4 The Stack Section
The stack is a data structure that expands and contracts in response to 
procedure invocations and returns, among other things. At runtime, the 
system places all automatic variables (nonstatic local variables), subroutine 
parameters, temporary values, and other objects in the stack section of 
memory in a special data structure called the activation record (the activation 
record is aptly named because the system creates an activation record when a 
subroutine first begins execution and deallocates the activation record when 
the subroutine returns to its caller). Therefore, the stack section in memory 
is very busy.

Many CPUs implement the stack using a special-purpose register called 
the stack pointer. Other CPUs (particularly RISC) don’t provide an explicit 
stack pointer and, instead, use a general-purpose register for this purpose. 
If a CPU provides an explicit stack pointer register, we say that the CPU 
supports a hardware stack; if a program uses a general-purpose register for 
this purpose, then we say that the CPU uses a software-implemented stack. 
The 80x86 is a good example of a CPU that provides a hardware stack—the 
PowerPC family is a good example of a CPU family that implements the stack 
in software (most PowerPC programs use R1 as the stack pointer register). 
Systems that provide hardware stacks can generally manipulate data on 



196 Chap te r 8

the stack using fewer instructions than systems that implement the stack in 
software. On the other hand, RISC CPU designers who’ve chosen to use 
a software stack implementation feel that the presence of a hardware stack 
actually slows down all instructions the CPU executes. In theory, you could 
argue that the RISC designers are right; in practice, the 80x86 family includes 
some of the fastest CPUs around, providing ample proof that having a 
hardware stack doesn’t necessarily mean you’ll wind up with a slow CPU.

8.1.5 The Heap Section and Dynamic Memory Allocation
Although simple programs may only need static and automatic variables, 
sophisticated programs need the ability to allocate and deallocate storage 
dynamically (at runtime) under program control. In the C and High-Level 
Assembler (HLA) languages, you would use the malloc and free functions for 
this purpose. C++ provides the new and delete operators. Pascal uses new and 
dispose. Other languages provide comparable routines. These memory-
allocation routines share a few things in common: 

� They let the programmer request how many bytes of storage to allocate.

� They return a pointer to the newly allocated storage (that is, the address 
of that storage).

� They provide a facility for returning the storage space to the system once it 
is no longer needed so the system can reuse it in a future allocation call. 

Dynamic memory allocation takes place in a section of memory known as 
the heap. Generally, an application refers to data on the heap using pointer 
variables, either implicitly or explicitly; some languages, like Java, implicitly 
use pointers behind the programmer’s back. As such, these objects in heap 
memory are usually referred to as anonymous variables because they are referred 
to by their memory address (via pointers) rather than by a name.

The OS and application create the heap section in memory after the 
program begins execution; the heap is never a part of the executable file. 
Generally, the operating system and language runtime libraries maintain 
the heap for an application. Despite the variations in memory management 
implementations, it’s still a good idea for you to have a basic idea of how 
heap allocation and deallocation operate because an inappropriate use of 
the heap management facilities will have a very negative impact on the 
performance of your applications.

8.2 What Is a Variable?

If you consider the word variable, it should be obvious that it describes some-
thing that varies. But exactly what is it that varies? To most programmers the 
answer will seem obvious: it’s the value that can vary during program execu-
tion. In fact, there are several things that can vary, so before attempting to 
describe what a variable is, it is probably a good idea to discuss some attri-
butes that variables (and other objects) may possess. To do this, I must first 
define attribute, binding, static objects, dynamic objects, scope, and lifetime.
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8.2.1 Attributes
An attribute is some feature that is associated with an object. For example, 
common attributes of a variable include that variable’s name, its memory 
address, its runtime value, a data type associated with that value, and the size 
(in bytes) of that variable. Different objects may have different sets of attri-
butes. For example, a data type is an object that possesses attributes such as a 
name and size, but it won’t usually have a value or memory location associ-
ated with it. A constant can have attributes such as a value and a data type, but 
it does not have a memory location and it might not have a name (for exam-
ple, if it is a literal constant). A variable may possess all of these attributes. 
Indeed, the attribute list usually determines whether an object is a constant, 
data type, variable, or something else.

8.2.2 Binding
Binding is the process of associating an attribute with an object. For example, 
when a value is assigned to a variable, the value is bound to that variable at the 
point of the assignment. The value remains bound to the variable until some 
other value is bound to it (via another assignment operation). Likewise, if 
you allocate memory for a variable while the program is running, the variable 
is bound to the memory address at that point. The variable and address are 
bound until you associate a different address with the variable. Binding 
needn’t occur at runtime. For example, values are bound to constant objects 
during compilation, and such bindings cannot change while the program is 
running. Similarly, some variables can have their address bound to them at 
compile time, and the memory address cannot change during program 
execution.

8.2.3 Static Objects
Static objects have an attribute bound to them prior to the execution of the 
application. Constants are good examples of static objects; they have the 
same value bound to them throughout the execution of the application. 
Global (program-level) variables in programming languages like Pascal, C/
C++, and Ada are also examples of static objects because they have the same 
memory address bound to them throughout the program’s lifetime. The 
system binds attributes to a static object before the program begins execu-
tion (usually during compilation or during the linking phase, though it is 
possible to bind values even earlier). 

8.2.4 Dynamic Objects
Dynamic objects have some attribute bound to them during program execu-
tion. The program may choose to change that attribute (dynamically) while 
the program is running. Dynamic attributes usually cannot be determined at 
compile time. Examples of dynamic attributes include values bound to vari-
ables at runtime and memory addresses bound to certain variables at runtime 
(e.g., via a malloc or other memory allocation function call). 
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8.2.5 Scope
The scope of an identifier is that section of the program where the identifier’s 
name is bound to the object. Because names in most compiled languages 
exist only during compilation, scope is usually a static attribute (although in 
some languages it is possible for scope to be a dynamic attribute). By con-
trolling where a name is bound to an object, it is possible to reuse that name 
elsewhere in the program. 

Most modern imperative programming languages (e.g., C/C++/C#, Java, 
Pascal, and Ada) support the concept of local and global variables. A local 
variable’s name is bound to a particular object only within a given section of 
a program (for example, within a particular function). Outside the scope of 
that object, the name can be bound to a different object. This allows a global 
and a local object to share the same name without any ambiguity. This may 
seem potentially confusing, but being able to reuse variable names like i or j
throughout a project can spare the programmer from having to dream up 
equally meaningless unique variable names for loop indexes and other uses 
in the program. The scope of the object’s declaration determines where the 
name applies to a given object.

In interpretive languages, where the interpreter maintains the identifier 
names during program execution, scope can be a dynamic attribute. For 
example, in various versions of the BASIC programming language, the dim
statement is an executable statement. Prior to the execution of dim, the name 
you define might have a completely different meaning than it does after 
executing dim. SNOBOL4 is another language that supports dynamic scope. 
Generally, most programming languages avoid dynamic scope because 
using it can result in difficult-to-understand programs—but the fact that 
most languages avoid dynamic scope doesn’t mean it doesn’t exist.

In general, scope can apply to any attribute, not just names. In this book, 
however, I’ll only use the term scope to describe where a name is associated 
with a given variable.

8.2.6 Lifetime
The lifetime of an attribute extends from the point when you first bind an 
attribute to an object to the point you break that bond, perhaps by binding 
a different attribute to the object. If the program associates some attribute 
with an object and never breaks that bond, the lifetime of the attribute is 
from the point of association to the point the program terminates. For 
example, the lifetime of a variable is from the time you first allocate 
memory for the variable to the moment you deallocate that variable’s 
storage. As a program binds static objects prior to execution (and such 
attributes do not change during program execution), the lifetime of a 
static object extends from when the program begins execution to when 
the application terminates.
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8.2.7 So What Is a Variable?
A variable is an object that can have a value bound to it dynamically. That is, 
the program can change the variable’s value attribute at runtime. Note the 
operative word can. It is only necessary for the program to be able to change 
a variable’s value at runtime; it doesn’t have to bind multiple values in order 
to consider the object a variable.

Dynamic binding of a value to an object is the defining attribute of a 
variable, though other attributes may be dynamic or static. For example, the 
memory address of a variable can be statically bound to the variable at compile 
time or dynamically bound at runtime. Likewise, variables in some languages 
have dynamic types that change during program execution, while other 
variables have static types that remain fixed over the execution of a given 
program. Only the binding of the value determines whether the object is a 
variable or something else (such as a constant).

8.3 Variable Storage

Values must be stored in and retrieved from memory. To do this, a compiler 
must bind a variable to one or more memory locations. The variable’s type 
determines the amount of storage it requires. Character variables may require 
as little as a single byte of storage, while large arrays or records can require 
thousands or millions of bytes of storage. To associate a variable with some 
memory, a compiler (or runtime system) binds the address of that memory 
location to that variable. When a variable requires two or more memory loca-
tions, the system will usually bind the address of the first memory location to 
the variable and assume that the contiguous locations following that address 
are also bound to the variable at runtime.

Three types of bindings are possible between variables and memory 
locations: static binding, pseudo-static (automatic) binding, and dynamic 
binding. Variables are generally classified as static, automatic, or dynamic based 
upon how the variable is bound to its memory location.

8.3.1 Static Binding and Static Variables
Static binding occurs prior to runtime, at one of four possible times: at 
language-design time, at compile time, at link time, or when the system loads 
the application into memory (but prior to execution). Binding at language 
design time is not all that common, but it does occur in some languages 
(especially assembly languages). Binding at compile time is common in 
assemblers and compilers that directly produce executable code. Binding at 
link time is fairly common (for example, some Windows compilers do this). 
Binding at load time, when the operating system copies the executable into 
memory, is probably the most common for static variables.



200 Chap te r 8

8.3.1.1 Binding at Language-Design Time

An address can be assigned at language-design time when a language 
designer associates a language-defined variable with a specific hardware 
address (for example, an I/O device or a special kind of memory), and 
that address never changes in any program. Such objects are common in 
embedded systems and rarely found in applications on general-purpose 
computer systems. For example, on an 8051 microcontroller, many C 
compilers and assemblers automatically associate certain names with fixed 
locations in the 128 bytes of data space found on the CPU. CPU register 
references in assembly language are good example of variables bound to 
some location at language-design time.

8.3.1.2 Binding at Compile Time

An address can be assigned at compile-time when the compiler knows the 
memory region where it can place static variables at runtime. Generally, such 
compilers generate absolute machine code that must be loaded at a specific 
address in memory prior to execution. Most modern compilers generate 
relocatable code and, therefore, don’t fall into this category. Nevertheless, 
lower-end compilers, high-speed student compilers, and compilers for 
embedded systems often use this binding technique.

8.3.1.3 Binding at Link Time

Certain linkers (and related tools) have the ability to link together various 
relocatable object modules of an application and create an absolute load 
module. So while the compiler produces relocatable code, the linker binds 
memory addresses to the variables (and machine instructions). Usually, the 
programmer specifies (via command-line parameters or a linker script file) the 
base address of all the static variables in the program; the linker will bind 
the static variables to consecutive addresses starting at the base address. 
Programmers who are placing their applications in ROM memory (such as 
a BIOS ROM for a PC) often employ this scheme.

8.3.1.4 Binding at Load Time

The most common form of static binding occurs at load time. Executable 
formats such as Microsoft’s PE/COFF and Linux’s ELF usually contain 
relocation information embedded in the executable file. The operating 
system, when it loads the application into memory, will decide where to place 
the block of static variable objects and will then patch all the addresses within 
instructions that reference those static objects. This allows the loader (for 
example, the operating system) to assign a different address to a static object 
each time it loads it into memory.

8.3.1.5 Static Variable Binding

A static variable is one that has a memory address bound to it prior to pro-
gram execution. Static variables enjoy a couple of advantages over other 
variable types. Because the compiler knows the address of the variable prior 
to runtime, the compiler can often use an absolute addressing mode or some 
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other simple addressing mode to access that variable. Static variable access is 
often more efficient than other variable accesses because no additional setup 
is needed to access a static variable.1

Another feature of static variables is that they retain any value bound to 
them until you explicitly bind another value or until the program terminates. 
This means that static variables retain values while other events (such as 
procedure activation and deactivation) occur. Different threads in a multi-
threaded application can also share data using static variables.

Static variables also have a few disadvantages worth mentioning. First 
of all, because the lifetime of a static variable matches that of the program, 
static variables consume memory the entire time the program is running. 
This is true even if the program no longer requires the value held by the 
static object. Another disadvantage to static variables (particularly when 
using the absolute addressing mode) is that the entire absolute address must 
usually be encoded as part of the instruction, making the instruction much 
larger. Indeed, on most RISC processors an absolute addressing mode isn’t 
even available because you cannot encode an absolute address in a single 
instruction.

Another disadvantage to using static variables is that code that uses static 
objects is not reentrant (meaning two threads or processes can be concurrently 
executing the same code sequence); more effort is required to use that code 
in a multithreaded environment (where two copies of a section of code could 
be executing simultaneously, both accessing the same static object). However, 
multithreaded operation introduces a lot of complexity that I don’t want to 
get into here, so I’ll ignore this issue for now. See any good textbook on oper-
ating system design or concurrent programming for more details concerning 
the use of static objects. Foundations of Multithreaded, Parallel, and Distributed 
Programming by Gregory R. Andrews (Addison-Wesley, 1999) is a good place 
to start.

The following example demonstrates the use of static variables in a C 
program and shows the 80x86 code that the Borland C++ compiler generates 
to access those variables:

#include <stdio.h>

static int i = 5;

static int j = 6;

 

int main( int argc, char **argv )

{

    

    i = j + 3;

    j = i + 2;      

    printf( "%d %d", i, j );

    return 0;   

1 At least, on an 80x86 CPU or some other CPU that supports absolute addresses. Some RISC 
processors do not support absolute addressing, so the program must set up a “static frame 
pointer” or “global frame register” when the program first begins execution, but this only has to 
be done once, so we can ignore the performance issues associated with this.



202 Chap te r 8

}

; Following are the memory declarations

; for the 'i' and 'j' variables. Note that

; these are declared in the global '_DATA'

; section.

_DATA   segment dword public use32 'DATA'

        align   4

_i      label   dword

        dd      5

        align   4

_j      label   dword

        dd      6

_DATA   ends

_TEXT   segment dword public use32 'CODE'

_main   proc    near

?live1@0:

   ;    

   ;    int main( int argc, char **argv )

   ;    

        push      ebp

        mov       ebp,esp

   ;    

   ;    {

   ;            

   ;            i = j + 3;

   ;    

@1:

        ; Load the EAX register with the

        ; current value of the global _j

        ; variable using the displacement-only

        ; addressing mode, add three to the

        ; value, and store into '_i':

        mov       eax,dword ptr [_j]

        add       eax,3

        mov       dword ptr [_i],eax

   ;    

   ;            j = i + 2;              

   ;

        ; Load the EDX register with the

        ; current value of the '_i' global

        ; variable using the displacement-

        ; only addressing mode, add two to

        ; this value, and store into

        ; '_j':

    

        mov       edx,dword ptr [_i]

        add       edx,2

        mov       dword ptr [_j],edx
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   ;    

   ;            printf( "%d %d", i, j );

   ;    

        push      dword ptr [_j]

        push      dword ptr [_i]

        push      offset s@

        call      _printf

        add       esp,12

   ;    

   ;            return 0;       

   ;

        ; xor eax, eax sets the main function

        ; return value to zero.

    

        xor       eax,eax

   ;    

   ;    }

   ;    

@3:

@2:

        pop       ebp

        ret 

_main   endp

_TEXT   ends

_DATA   segment dword public use32 'DATA'

; s@ is a string used by the printf function:

s@      label   byte

        ;       s@+0:

        db      "%d %d",0

        align   4

_DATA   ends

As the comments point out, the assembly language code the compiler 
emits uses the displacement-only addressing mode to access all the static 
variables.

8.3.2 Pseudo-Static Binding and Automatic Variables
Automatic variables have an address bound to them when a procedure or 
other block of code begins execution. The program releases that storage 
when the block or procedure completes execution. Such objects are called 
automatic variables because the runtime code automatically allocates and 
deallocates storage for them, as needed.

In most programming languages, automatic variables use a combination 
of static and dynamic binding known as pseudo-static binding. The compiler 
assigns an offset from a base address to a variable name during compilation. 
At runtime the offset always remains fixed, but the base address can vary. 
For example, a procedure or function allocates storage for a block of local 
variables and then accesses the local variables at fixed offsets from the start 
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of that block of storage. Although the compiler cannot determine the final 
memory address of the variable at runtime, it can select an offset that never 
changes during program execution, hence the name pseudo-static.

Some programming languages use the term local variables in place of 
automatic variables. A local variable is one whose name is statically bound to 
a given procedure or block (that is, the scope of the name is limited to that 
procedure or block of code). Therefore, local is a static attribute in this con-
text. It’s easy to see why the terms local variable and automatic variable are 
often confused. In some programming languages, such as Pascal, local 
variables are always automatic variables and vice versa. Nonetheless, always 
keep in mind that the local attribute is a static attribute, while the automatic
attribute is a dynamic one.

Automatic variables have a couple of important advantages. First, they 
only consume storage while the procedure or block containing them is 
executing. This allows multiple blocks and procedures to share the same 
pool of memory for their automatic variable needs. Although some extra 
code must execute in order to manage automatic variables (in a memory 
structure known as an activation record), this only requires a few machine 
instructions on most CPUs and only has to be done once for each procedure/
block entry and exit. While in certain circumstances, the cost can be signifi-
cant, the extra time and space needed to set up and tear down the activation 
record is usually inconsequential. Another advantage of automatic variables 
is that they often use a base-plus-offset addressing mode, where the base of 
the activation record is kept in a register and the offsets into the activation 
record are small (often 256 bytes or fewer). Therefore, CPUs don’t have to 
encode a full 32-bit or 64-bit address as part of the machine instruction—
just an 8-bit (or other small) displacement, yielding shorter instructions. It’s 
also worth noting that automatic variables are “thread-safe,” and code that 
uses automatic variables can be reentrant. This is because each thread main-
tains its own stack space (or similar data structure) where compilers maintain 
automatic variables; therefore, each thread will have its own copy of any auto-
matic variables the program uses.

Automatic variables do have some disadvantages. If you want to initialize 
an automatic variable, you have to use machine instructions to do so. You 
cannot initialize an automatic variable, as you can static variables, when the 
program loads into memory. Also, any values maintained in automatic vari-
ables are lost whenever you exit the block or procedure containing them. As 
noted in the previous paragraph, automatic variables require a small amount 
of overhead; some machine instructions must execute in order to build and 
destroy the activation record containing those variables.

Here’s a short C example that uses automatic variables and the 80x86 
assembly code that the Microsoft Visual C++ compiler produces for it:

#include <stdio.h>

 

int main( int argc, char **argv )

{
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    int i;

    int j;

    

    j = 1;

    i = j + 3;

    j = i + 2;      

    printf( "%d %d", i, j );

    return 0;   

}

Assembly code emitted for the previous C code:

; Data emitted for the string constant

; in the printf function call:

_DATA   SEGMENT

$SG790  DB      '%d %d', 00H

_DATA   ENDS

PUBLIC  _main

EXTRN   _printf:NEAR

; Function compile flags: /Ods

_TEXT   SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main   PROC NEAR

; File g:\t.c

; Line 7

;

; Build the "activation record" that

; holds the automatic (local) variables:

        push    ebp

        mov     ebp, esp

        push    ecx ; Storage for _i on stack

        push    ecx ; Storage for _j on stack

; Line 13 // j = 1;

        mov     DWORD PTR _j$[ebp], 1

; Line 14 // i = j + 3;

        mov     eax, DWORD PTR _j$[ebp]

        add     eax, 3

        mov     DWORD PTR _i$[ebp], eax

; Line 15 // j = i + 2;
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        mov     eax, DWORD PTR _i$[ebp]

        inc     eax

        inc     eax

        mov     DWORD PTR _j$[ebp], eax

; Line 16 // printf function call

        push    DWORD PTR _j$[ebp]

        push    DWORD PTR _i$[ebp]

        push    OFFSET FLAT:$SG790

        call    _printf

        add     esp, 12    ; 0000000cH

; Line 17 // Return zero as function result.

        xor     eax, eax

; Line 18 // Deallocates activation record

        leave

; Returns from main.

        ret     0

_main   ENDP

_TEXT   ENDS

Note that when accessing automatic variables, the assembly code uses 
a base-plus-displacement addressing mode (for example, _j$[ebp]). This 
addressing mode is often shorter than the displacement-only addressing 
mode that static variables use (assuming, of course, that the offset to the 
automatic object is within 127 bytes of the base address held in EBP).

8.3.3 Dynamic Binding and Dynamic Variables
A dynamic variable is one that has storage bound to it at runtime. In some 
languages, the application programmer is completely responsible for bind-
ing addresses to dynamic objects; in other languages, the runtime system 
automatically allocates and deallocates storage for a dynamic variable.

Dynamic variables are generally those allocated on the heap via a memory 
allocation function such as malloc or new. The compiler has no way of deter-
mining the runtime address of a dynamic object. Therefore, the program 
must always refer to a dynamic object indirectly by using a pointer.

The big advantage to dynamic variables is that the application controls 
their lifetimes. Dynamic variables consume storage only as long as necessary, 
and the runtime system can reclaim that storage when the variable no longer 
requires it. Unlike automatic variables, the lifetime of a dynamic variable is 
not tied to the lifetime of some other object, such as a procedure or code 
block entry and exit. Memory is bound to a dynamic variable at the point 
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the variable first needs it, and the memory can be released at the point the 
variable no longer needs it.2 For variables that require considerable storage, 
dynamic allocation can make efficient use of memory as dynamically allo-
cated variables hold onto the memory only as long as necessary.

Another advantage to dynamic variables is that most code references 
dynamic objects using a pointer. If that pointer value is already sitting in a 
CPU register, the program can usually reference that data using a short 
machine instruction, requiring no extra bits to encode an offset or address.

Dynamic variables have several disadvantages. First, usually some storage 
overhead is necessary to maintain dynamic variables. Static and automatic 
objects usually don’t require extra storage associated with each such variable 
appearing in a program; the runtime system, on the other hand, often requires 
some number of bytes to keep track of each dynamic variable present in the 
system. This overhead ranges anywhere from 4 or 8 bytes to many dozens of 
bytes (in an extreme case) and keeps track of things like the current memory 
address of the object, the size of the object, and its type. If you’re allocating 
small objects, like integers or characters, the amount of storage required for 
bookkeeping purposes could exceed the storage that the actual data requires. 
Also, most languages reference dynamic objects using pointer variables; as 
such, some additional storage is required by the pointer variable above and 
beyond the actual storage for the dynamic data.

Another problem with dynamic variables is performance. Because 
dynamic data is usually found in memory, the CPU has to access memory 
(which is slower than cached memory) on nearly every dynamic variable 
access.3 Even worse, accessing dynamic data often requires two memory 
accesses—one to fetch the pointer’s value and one to fetch the dynamic data, 
indirectly through the pointer. Another problem is that managing the heap,
the place where the runtime system keeps the dynamic data, can also be 
expensive. Whenever an application requests storage for a dynamic object, 
the runtime system has to search for a contiguous block of free memory 
large enough to satisfy the request. This search operation can be expensive, 
depending on the organization of the runtime heap (which affects the 
amount of overhead storage associated with each dynamic variable). Further-
more, when releasing a dynamic object, the runtime system may need to 
execute some code in order to make that storage available for use by other 
dynamic objects. These runtime heap allocation and deallocation operations 
are usually far more expensive than allocating and deallocating a block of 
automatic variables during procedure entry/exit.

Another problem with dynamic variables that should be considered here 
is that some languages (e.g., Pascal and C/C++) require the application pro-
grammer to explicitly allocate and deallocate storage for dynamic variables. 
Because the allocation and deallocation is not automatic, defects can creep 
into the code because of errors made by the application programmer. This is 

2 In practice, many runtime systems will not bother breaking the address binding until the 
system actually needs the storage for another purpose, but this issue is not important here.
3 Some compilers are smart enough to keep some dynamic data in registers, avoiding memory 
in certain cases, but in many cases the runtime code will have to access main memory when 
referencing dynamic data.
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why languages such as C# attempt to handle dynamic allocation automatically 
for the programmer, even though this can be more expensive (slower). 
Here’s a short example in C that demonstrates the kind of code that the 
Microsoft Visual C++ compiler will generate in order to access dynamic 
objects allocated with malloc.

#include <stdlib.h>

#include <stdio.h>

 

int main( int argc, char **argv )

{

    

    int *i;

    int *j;

    

    

    i = malloc( sizeof( int ) );

    j = malloc( sizeof( int ) );

    *i = 1;

    *j = 2;     

    printf( "%d %d", *i, *j );

    free( i );

    free( j );

    return 0;   

}

Here’s the machine code the compiler generates, including manually 
inserted comments that describe the extra work needed to access dynamically 
allocated objects:

_DATA   SEGMENT

$SG1139 DB      '%d %d', 00H

_DATA   ENDS

PUBLIC  _main

EXTRN   _free:NEAR

EXTRN   _malloc:NEAR

EXTRN   _printf:NEAR

; Function compile flags: /Ods

_TEXT   SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main   PROC NEAR

; File g:\t.c

; Line 8 // Construct the activation record

        push    ebp

        mov     ebp, esp

        push    ecx ; Allocates storge for

        push    ecx ; _i and _j.
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; Line 14

; Call malloc and store the returned

; pointer value into the _i variable:

        push    4

        call    _malloc

        pop     ecx

        mov     DWORD PTR _i$[ebp], eax

; Line 15

; Call malloc and store the returned

; pointer value into the _j variable:

        push    4

        call    _malloc

        pop     ecx

        mov     DWORD PTR _j$[ebp], eax

; Line 16

; Store 1 into the dynamic variable pointed

; at by _i. Note that this requires two

; instructions.

        mov     eax, DWORD PTR _i$[ebp]

        mov     DWORD PTR [eax], 1

; Line 17

; Store 2 into the dynamic variable pointed

; at by _j. This also requires two instructions.

        mov     eax, DWORD PTR _j$[ebp]

        mov     DWORD PTR [eax], 2

; Line 18

; Call printf to print the dynamic variables' 

; values:

        mov     eax, DWORD PTR _j$[ebp]

        push    DWORD PTR [eax]

        mov     eax, DWORD PTR _i$[ebp]

        push    DWORD PTR [eax]

        push    OFFSET FLAT:$SG1139

        call    _printf

        add     esp, 12

; Free the two variables

;

; Line 19

        push    DWORD PTR _i$[ebp]

        call    _free

        pop     ecx

; Line 20

        push    DWORD PTR _j$[ebp]

        call    _free
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        pop     ecx

; Line 21 

; Return a function result of zero:

        xor     eax, eax

; Line 22

; Deallocate the activation record and

; return from main.

        leave

        ret     0

_main   ENDP

_TEXT   ENDS

END

As you can see, a lot of extra work is needed to access dynamically 
allocated variables via a pointer.

8.4 Common Primitive Data Types
Computer data always has a data type attribute that describes how the pro-
gram interprets that data. The data type also determines the size (in bytes) of 
the data in memory. Data types can be divided into two classes: those that the 
CPU can hold in a CPU register and operate upon directly and those that are 
composed of the following smaller data types. I’ll use the term primitive data 
type to describe atomic objects upon which the CPU may operate directly, 
and I’ll use the term composite data types to describe those aggregate objects 
made up of smaller, primitive data types. In the following sections we’ll 
review (from Volume 1) the primitive data types found on most modern 
CPUs, and in the next chapter I’ll begin discussing composite data types.

8.4.1 Integer Variables
Most programming languages provide some mechanism for storing integer 
values in memory variables. In general, a programming language uses either 
unsigned binary representation, two’s-complement representation, or binary-
coded decimal representation (or a combination of these) to represent 
integer values.

Perhaps the most fundamental property of an integer variable in a pro-
gramming language is the number of bits allocated to represent that integer 
value. In most modern programming languages, the number of bits used to 
represent an integer value is usually 8, 16, 32, 64, or some other power of 2. 
Many languages only provide a single size for representing integers, but some 
languages let you select from one of several different sizes. You choose the 
size based on the range of values you want to represent, the amount of mem-
ory you want the variable to consume, and the performance of arithmetic 
operations involving that value. Table 8-1 lists some common sizes and 
ranges for various signed, unsigned, and decimal integer variables.
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Not all languages will support all of these different sizes (indeed, to 
support all of these different sizes in the same program, you would probably 
have to use assembly language). As noted earlier, some languages provide 
only a single size, which is usually the processor’s native integer size (that is, 
the size of a CPU general-purpose integer register).

Languages that do provide multiple integer sizes often don’t give you an 
explicit choice of sizes from which to choose. For example, the C program-
ming language provides up to four different integer sizes: char (which is 
always 1 byte), short, int, and long. With the exception of the char type, C 
does not specify the sizes of these integer types other than to state that short 
integers are less than or equal to int objects in size, and int objects are less 
than or equal to long integers in size. (In fact, all three could be the same 
size.) C programs that depend on integers being a certain size may fail when 
compiled with different compilers that don’t use the same sizes as the first 
compiler.

While it may seem inconvenient that various programming languages 
avoid providing an exact specification of the size of an integer variable in the 
language definition, keep in mind that this ambiguity is intentional. When 
one declares an “integer” variable in a given programming language, the 
language leaves it up to the compiler’s implementer to choose the best size 
for that integer, based on performance and other considerations. The 
definition of “best” may change based on the CPU for which the compiler 
generates code. For example, a compiler for a 16-bit processor may choose to 
implement 16-bit integers because the CPU processes them most efficiently. 
A compiler for a 32-bit processor, however, may choose to implement 32-bit 
integers (for the same reason). Languages that specify the exact size of various 

Table 8-1: Common Integer Sizes and Their Ranges

Size, in Bits Representation Unsigned Range

8 Unsigned 0..255

Signed 128..+127

Decimal 0..99

16 Unsigned 0..65,535

Signed 32768..+32,767

Decimal 0..9999

32 Unsigned 0..4,294,967,295

Signed 2,147,483,648..+2,147,483,647

Decimal 0..99999999

64 Unsigned 0..18,446,744,073,709,551,615

Signed 9,223,372,036,854,775,808..+9,223,372,036,854,775,807

Decimal 0..9999999999999999

128 Unsigned 0..340,282,366,920,938,463,463,374,607,431,768,211,455

Signed 170,141,183,460,469,231,731,687,303,715,884,105,728 ..
+170,141,183,460,469,231,731,687,303,715,884,105,727

Decimal 0..99,999,999,999,999,999,999,999,999,999,999
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integer formats (such as Java) can suffer as processor technology marches 
along and it becomes more efficient to process larger data objects. For exam-
ple, when the world switched from 16-bit processors to 32-bit processors in 
general-purpose computer systems, it was actually faster to do 32-bit arith-
metic on most of the newer processors. Therefore, compiler writers redefined 
“integer” to mean “32-bit integer” in order to maximize the performance of 
programs employing integer arithmetic.

Some programming languages provide support for unsigned integer 
variables as well as signed integers. At first glance, it might seem that the 
whole purpose behind supporting unsigned integers is to provide twice the 
number of positive values when negative values aren’t required. In fact, there 
are many other reasons why great programmers might choose unsigned over 
signed integers when writing efficient code.

On some CPUs, unsigned integer multiplication and division are faster 
than their signed counterparts. Comparing values within the range 0..n can 
be done more efficiently using unsigned integers rather than signed integer 
(requiring only a single comparison against n in the unsigned case); this is 
especially important when checking bounds of array indices when the array’s 
element indexes begin at zero.

Many programming languages will allow you to include variables of 
different sizes within the same arithmetic expression. The compiler will 
automatically sign-extend or zero-extend operands to the larger size within 
an expression as needed to compute the final result. The problem with this 
automatic conversion is that it hides the fact that extra work is required when 
processing the expression, and the expressions themselves don’t explicitly 
show this. An assignment statement such as

x = y + z - t;

could be a short sequence of machine instructions if the operands are all the 
same size, or it could require some additional instructions if the operands have 
different sizes. For example, consider the following C code:

#include <stdio.h>

static char c;

static short s;

static long l;

static long a;

static long b;

static long d;

 

int main( int argc, char **argv )

{

    

    l = l + s + c;  

    printf( "%ld %ld %ld", l, s, c );

    a = a + b + d;  
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    printf( "%ld %ld %ld", a, b, d );

    return 0;   

}

Compiled with the Borland C++ compiler, you get the following two 
assembly language sequences for the two assignment statements:

;            l = l + s + c;  

;

@1:

        movsx     eax,word ptr [_s]

        add       eax,dword ptr [_l]

        movsx     edx,byte ptr [_c]

        add       eax,edx

        mov       dword ptr [_l],eax

;            a = a + b + d;  

;

        mov       edx,dword ptr [_a]

        add       edx,dword ptr [_b]

        add       edx,dword ptr [_d]

        mov       dword ptr [_a],edx

As you can see, the statement that operates on variables whose sizes are 
all the same uses fewer instructions than the one that mixes operand sizes in 
the expression.

Another thing to note, when using different-sized integers in an 
expression, is that not all CPUs support all operand sizes as efficiently. 
While it should be fairly obvious that using an integer size that is larger 
than the CPU’s general-purpose integer registers will produce inefficient 
code, it might not be quite as obvious that using smaller integer values can 
be inefficient as well. Many RISC CPUs only work on operands that are 
exactly the same size as the general-purpose registers. Smaller operands 
must first be zero-extended or sign-extended to the size of a general-
purpose register prior to any calculations involving those values. Even 
on CISC processors, such as the 80x86, that have hardware support for 
different sizes of integers, using certain sizes can be more expensive. For 
example, under 32-bit operating systems, instructions that manipulate 16-
bit operands require an extra opcode prefix byte and are, therefore, larger 
than instructions that operate on 8-bit or 32-bit operands.

8.4.2 Floating-Point/Real Variables
Like integers, many HLLs provide multiple floating-point variable sizes. 
Most languages provide at least two different sizes, a 32-bit single-precision 
floating-point format and a 64-bit double-precision floating-point format, 
based on the IEEE 754 floating-point standard. A few languages provide 
80-bit floating-point variables, based on Intel’s 80-bit extended-precision 
floating-point format, but such usage is becoming rare.
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Different floating-point formats trade off space and performance for 
precision. Calculations involving smaller floating-point formats are usually 
quicker than calculations involving the larger formats. However, you give up 
precision to achieve improved performance and size savings (see Write Great 
Code, Volume 1, Chapter 4 for details).

As with expressions involving integer arithmetic, you should avoid 
mixing different-sized floating-point operands in an expression. The CPU 
(or FPU) must convert all floating-point values to the same format before 
using them. This can involve additional instructions (consuming more 
memory) and additional time. Therefore, you should try to use the same 
floating-point types throughout an expression, wherever possible.

Conversion between integer and floating-point formats is another 
expensive operation you should avoid. Modern HLLs attempt to keep vari-
ables’ values in registers as much as possible. Unfortunately, on most modern 
CPUs it is impossible to move data between the integer and floating-point 
registers without first copying that data to memory (which is expensive, 
because memory access is slow compared with register access). Furthermore, 
conversion between integer and floating-point numbers often involves several 
specialized instructions. All of this consumes time and memory. Whenever 
possible, avoid these conversions.

8.4.3 Character Variables
Standard character data in most modern HLLs consumes one byte per 
character. On CPUs that support byte addressing, such as the Intel 80x86 
processor, a compiler can reserve a single byte of storage for each character 
variable and efficiently access that character variable in memory. Some RISC 
CPUs, however, cannot access data in memory except in 32-bit chunks (or 
some other size other than 8 bits). 

For CPUs that cannot address individual bytes in memory, HLL compilers 
usually reserve 32 bits for a character variable and only use the LO byte of 
that double-word variable for the character data. Because few programs have 
a large number of scalar character variables,4 the amount of space wasted is 
hardly an issue in most systems. However, if you have an unpacked array of 
characters, the wasted space can become significant. I’ll return to this issue 
in Chapter 9.

Modern programming languages support the Unicode character set. 
Unicode characters require 2 bytes of memory to hold the character’s data 
value. On CPUs that support byte or word addressing, HLL compilers gen-
erally reserve only 2 bytes for a Unicode character variable. On CPUs that 
cannot efficiently access objects smaller than 32 bits, HLL compilers usually 
reserve 32 bits and use only the LO 16 bits for the Unicode character data.

Lately, because 16 bits cannot encode a sufficient number of characters 
to represent all the world’s different alphabets and symbol sets, applications 
have begun using multibyte character sets such as UTF-8. These encode 
individual characters using a variable-length string of 1 to 5 characters (see 
Chapter 10).

4 Scalar, in this context, means “not an array of characters.”
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8.4.4 Boolean Variables
A Boolean variable requires only a single bit to represent the two values True
or False. HLLs will usually reserve the smallest amount of memory possible 
for such variables (a byte on machines that support byte addressing, and a 
larger amount of memory on those CPUs that can only address words or 
double words).

Although most HLL compilers usually reserve the smallest amount of 
addressable memory possible for a Boolean variable, this isn’t always the 
case. Some languages (like FORTRAN) allow you to create multibyte 
Boolean variables (for example, the FORTRAN LOGICAL*4 data type).

Some languages (C for example) don’t support an explicit Boolean data 
type. They use an integer data type to represent Boolean values. In such 
languages, you get to choose the size of your Boolean variables by choosing 
the size of the integer you use to hold the Boolean value. For example, in a 
typical 32-bit implementation of the C/C++ languages, you can define 1-byte, 
2-byte, or 4-byte Boolean values as shown here:5

Some languages, under certain circumstances, will use only a single bit of 
storage for a Boolean variable when that variable is a field of a record or an 
element of an array. I’ll return to this discussion in Chapter 9 when consider-
ing composite data structures.

8.5 Variable Addresses and High-level Languages

The organization, class, and type of variables in your programs can affect the 
efficiency of the code that a compiler produces. Additionally, issues like the 
order of declaration, the size of the object, and the placement of the object 
in memory can have a big impact on the running time of your programs. In 
this section, I’ll describe how you can organize your variable declarations to 
produce efficient code.

As for immediate constants encoded in machine instructions, many 
CPUs provide specialized addressing modes that access memory more effi-
ciently than other, more general, addressing modes. Just as you can reduce 
the size and improve the speed of your programs by carefully selecting the 
constants you use, you can make your programs more efficient by carefully 
choosing how you declare variables. But whereas with constants you are 
primarily concerned with their values, with variables you must consider the 
address in memory where the compiler places those variables.

C Integer Data Type Size of Boolean Object

char 1 byte

short int 2 bytes

long int 4 bytes

5 Assuming, of course, that your C/C++ compiler uses 16-bit integers for short integers and 32-
bit integers for long integers.
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The 80x86 is a typical example of a CISC processor that provides 
multiple address sizes. When running on a modern 32-bit operating system 
like Linux or Windows, the 80x86 CPU supports three address sizes: 0-bit, 
8-bit, and 32-bit. The 80x86 uses 0-bit displacements for register-indirect 
addressing modes. I’ll ignore the 0-bit displacement addressing for the time 
being because 80x86 compilers generally don’t use this particular addressing 
mode to access variables you explicitly declare in your code. The 8-bit and 
32-bit displacement addressing modes are the more interesting ones for the 
current discussion. 

8.5.1 Storage Allocation for Global and Static Variables
The 32-bit displacement is, perhaps, the easiest to understand. Variables 
you declare in your program, which the compiler allocates in memory rather 
than in a register, have to appear somewhere in memory. On most 32-bit 
processors, the address bus is 32 bits wide, so it takes a 32-bit address to 
access a variable at an arbitrary location in memory. An instruction that 
encodes this 32-bit address as part of the instruction can access any memory 
variable. The 80x86 provides the displacement-only addressing mode whose 
effective address is exactly the 32-bit constant embedded in the instruction. 

A problem with 32-bit addresses (one that gets even worse as we move to 
64-bit processors with a 64-bit address) is that the address winds up consuming 
the largest portion of the instruction’s encoding. Certain forms of the dis-
placement-only addressing mode on the 80x86, for example, have a 1-byte 
opcode and a 4-byte address. Therefore, 80 percent of the instruction’s size is 
consumed by the address. On typical RISC processors, the situation is even 
worse. Because the instructions are uniformly 32 bits long on a typical RISC 
CPU, you cannot encode a 32-bit address as part of the instruction. In order 
to access a variable at an arbitrary 32-bit address in memory, you need to load 
the 32-bit address of that variable into a register and then use the register 
indirect addressing mode to access the memory variable. This could require 
three 32-bit instructions as Figure 8-2 demonstrates; that’s expensive in terms 
of both speed and space.

Figure 8-2: RISC CPU access of an absolute address

32-bit address
32-bit-wide
instructions

1.

2.

3.
1. Load immediate constant
    into the HO word of a
    register.
2. Load immediate constant
    into the LO word of a
    register.

3. Load memory value indirect
    from register loaded in (1,2).
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Because RISC CPUs don’t run horribly slower than CISC processors, it 
should be obvious that compilers rarely generate code this bad. In reality, 
programs running on RISC CPUs often keep base addresses to blocks of 
objects in registers, so they can efficiently access variables in those blocks 
using short offsets from the base register. But how do compilers deal with 
arbitrary addresses in memory?

8.5.2 Using Automatic Variables to Reduce Offset Sizes
One way to avoid large instruction sizes with large displacements is to use 
an addressing mode with a smaller displacement. The 80x86, for example, 
provides an 8-bit displacement form for the base-plus-indexed addressing 
mode. This form allows you to access data at an offset of –128 through +127 
bytes around a base address contained in a 32-bit register. RISC processors 
have similar features, although the number of displacement bits is usually 
larger (16 bits), allowing a greater range of addresses. 

By pointing a 32-bit register at some base address in memory and placing 
your variables near that base address, you can use the shorter forms of these 
instructions so your program will be smaller and will run more quickly. Obvi-
ously, this isn’t too difficult if you’re working in assembly language and you 
have direct access to the CPU’s registers. However, if you’re working in an 
HLL, you may not have direct access to the CPU’s registers and even if you 
did, you probably couldn’t convince the compiler to allocate your variables at 
convenient addresses. How do you take advantage of this small-displacement 
addressing mode in your HLL programs? The answer is that you don’t 
explicitly specify the use of this addressing mode, the compiler does it for 
you automatically.

Consider the following trivial function in Pascal:

function trivial( i:integer; j:integer ):integer;

var

k:integer;

begin

k := i + j;

trivial := k;

end;

Upon entry into this function, the compiled code constructs an activation 
record (sometimes called a stack frame). An activation record is a data structure 
in memory where the system keeps the local data associated with a function 
or procedure. The activation record includes parameter data, automatic 
variables, the return address, temporary variables that the compiler allocates, 
and machine-state information (for example, saved register values). The 
runtime system allocates storage for an activation record on the fly and, in 
fact, two different calls to the procedure or function may place the activation 
record at different addresses in memory. In order to access the data in an 
activation record, most HLLs point a register (usually called the frame pointer)
at the activation record, and then the procedure or function references 
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automatic variables and parameters at some offset from this frame pointer. 
Unless you have many automatic variables and parameters or your local 
variables6 and parameters are quite large, these variables generally appear in 
memory at an offset that is near the base address. This means that the CPU 
can use a small offset when referencing variables near the base address held 
in the frame pointer. In the Pascal example given earlier, parameters i and j
and the local variable k would most likely be within a few bytes of the frame 
pointer’s address, so the compiler can encode these instructions using a small 
displacement rather than a large displacement. If your compiler allocates 
local variables and parameters in an activation record, all you have to do is 
arrange your variables in the activation record so that they appear near the 
base address of the activation record. But how do you do that?

Construction of an activation record begins in the code that calls a 
procedure. The caller places the parameter data (if any) in the activation 
record. Then the execution of an assembly language call instruction adds 
the return address to the activation record. At this point, construction of the 
activation record continues within the procedure itself. The procedure copies 
the register values and other important state information and then makes 
room in the activation record for local variables. The procedure must also 
update the frame-pointer register (e.g., EBP on the 80x86) so that it points at 
the base address of the activation record.

To see what a typical activation record looks like, consider the following 
HLA procedure declaration:

procedure ARDemo( i:uns32; j:int32; k:dword ); @nodisplay;

var

a:int32;

r:real32;

c:char;

b:boolean;

w:word;

begin ARDemo;

.

.

.

end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it builds the 
activation record by pushing the data for the parameters onto the stack. 
The calling code for this procedure will push the parameters onto the stack 
in the order they appear in the parameter list, from left to right. Therefore, 
the calling code first pushes the value for the i parameter, then pushes the 
value for the j parameter, and finally pushes the data for the k parameter. 
After pushing the parameters, the program calls the ARDemo procedure. 
Immediately upon entry into the ARDemo procedure, the stack contains these 
four items arranged as shown in Figure 8-3, assuming the stack grows from 
high memory addresses to low memory addresses (as it does on most 
processors).

6 Remember, in Pascal local variables are always automatic variables, so this discussion will use 
the two terms interchangeably.
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Figure 8-3: Stack organization immediately 
upon entry into ARDemo

The first few instructions in ARDemo will push the current value of the 
frame-pointer register (e.g., EBP on the 80x86) onto the stack and then copy 
the value of stack pointer (ESP on the 80x86) into the frame-pointer register. 
Next, the code drops the stack pointer down in memory to make room for 
the local variables. This produces the stack organization shown in Figure 8-4 
on the 80x86 CPU.

To access objects in the activation record you must use offsets from the 
frame-pointer register (EBP in Figure 8-4) to the desired object.

Figure 8-4: Activation record for ARDemo

The two items of immediate interest are the parameters and the 
local variables. You can access the parameters at positive offsets from the 
frame-pointer register; you can access the local variables at negative offsets 
from the frame-pointer register, as Figure 8-5 shows.
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Figure 8-5: Offsets of objects in the ARDemo 
activation record on the 80x86

Intel specifically reserves the EBP (extended base pointer) to point at 
the base of the activation record. Therefore, compilers will typically use this 
register as the frame-pointer register when allocating activation records on 
the stack. Some compilers attempt to use the 80x86 ESP (stack pointer) 
register as the pointer to the activation record because this reduces the 
number of instructions in the program. Whether the compiler uses EBP, 
ESP, or some other register, the bottom line is that the compiler typically 
points some register at the activation record, and most of the local variables 
and parameters are near the base address of the activation record. That is the 
important issue for the discussion that follows.

As you can see in Figure 8-5, all the local variables and parameters in the 
ARDemo procedure are within 127 bytes of the frame-pointer register (EBP). 
This means that on the 80x86 CPU, an instruction that references one of 
these variables or parameters will be able to encode the offset from EBP 
using a single byte. Because of the way the program builds the activation 
record, parameters will appear at positive offsets from the frame-pointer 
register, and local variables will appear at negative offsets from the frame-
pointer register.

For procedures that have only a few parameters and local variables, the 
CPU will be able to access all parameters and local variables using a small 
offset (that is, 8 bits on the 80x86, 16 bits on various RISC processors). 
Consider, however, the following C/C++ function:

int BigLocals( int i, int j );

{

int array[256];

int k;

.

.

.

}
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The activation record for this function appears in Figure 8-6. One 
difference you’ll notice between this activation record and the ones for the 
Pascal and HLA functions is that C pushes its parameters on the stack in the 
reverse order (that is, it pushes the last parameter first, and it pushes the first 
parameter last). This difference, however, does not impact our discussion.

Figure 8-6: Activation record for BigLocals function

The important thing to note in Figure 8-6 is that the local variables 
array and k have large negative offsets. With offsets of –1,024 and –1,028 
(assuming an integer is 32 bits), the displacements from EBP to array and 
k are well outside the range that the compiler can encode into a single 
byte on the 80x86. Therefore, the compiler will have no choice but to 
encode these displacements using a 32-bit value. Of course, this will make 
accessing these local variables in the function quite a bit more expensive.

Nothing can be done about the array variable in this example (no matter 
where you put it, the offset to the base address of the array will be at least 
1,024 bytes from the activation record’s base address). However, consider the 
activation record appearing in Figure 8-7.

Figure 8-7: Another possible activation record 
layout for the BigLocals function
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In this figure, the compiler has rearranged the local variables in the 
activation record. Although it will still take a 32-bit displacement to access 
the array variable, accessing k now uses an 8-bit displacement (on the 80x86) 
because k’s offset is –4. You can produce these offsets with the following code:

int BigLocals( int i, int j );

{

    int k;

    int array[256];

        .

        .

        .

}

In theory, this isn’t a terribly difficult optimization for a compiler to do 
(rearranging the order of the variables in the activation record), so you’d 
expect the compiler to make this modification for you so that it can access as 
many local variables as possible using small displacements. In practice, not all 
compilers actually do this optimization for various technical and practical 
reasons (specifically, it can break some poorly written code that makes 
assumptions about the placement of variables in the activation record).

If you want to ensure that the maximum number of local variables in 
your procedure have the smallest possible displacements, the solution is 
trivial: declare all your 1-byte variables first, your 2-byte variables second, 
your 4-byte variables next, and so on up to the largest local variable in your 
function. Generally, though, you’re probably more interested in reducing 
the size of the maximum number of instructions in your function rather than 
reducing the size of the offsets required by the maximum number of vari-
ables in your function. For example, if you have 128 1-byte variables and you 
declare these variables first, you’ll only need a single byte displacement if 
you access them. However, if you never access these variables, the fact that 
they have a 1-byte displacement rather than a 4-byte displacement saves you 
nothing. The only time you save any space is when you actually access that 
variable’s value in memory via some machine instruction that is using a 1-byte 
displacement rather than a 4-byte displacement. Therefore, to reduce your 
function’s object code size, you want to maximize the number of instructions 
that use a small displacement. If you refer to a 100-byte array far more often 
than any other variable in your function, you’re probably better off declaring 
that array first, even if it only leaves 28 bytes of storage (on the 80x86) for 
other variables that will use the shorter displacement.

RISC processors typically use a 16-bit offset to access fields of the activa-
tion record. Therefore, you have more latitude with your declarations when 
using a RISC chip (which is good, because when you do exceed the 16-bit 
limitation, accessing a local variable gets really expensive). Unless you’re declar-
ing one or more arrays that consume more than 32,768 bytes (combined), 
the typical compiler for a RISC chip is going to generate decent code.

This same argument applies to parameters as well as local variables. 
However, it’s rare to find code passing a large data structure (by value) to a 
function because of the expense involved.
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8.5.3 Storage Allocation for Intermediate Variables
Intermediate variables are those that are local to one procedure/function 
but global to another. You’ll find intermediate variables in block-structured 
languages like Pascal/Delphi/Kylix, Ada, Modula-2, and HLA that support 
nested procedures. Consider the following example program in Pascal:

program nestedProcedures;

var

    globalVariable: integer;

    procedure procOne;

    var

        intermediateVariable: integer;

        procedure procTwo;

        var

            localVariable:integer;

        begin

            localVariable := intermediateVariable +

                                    globalVariable;

                .

                .

                .

        end; (* procTwo *)

    begin (* procOne *)

        .

        .

        .

    end; (* procOne *)

begin (* main program *)

        .

        .

        .

end. (* main program*)

As you can see in this code fragment, nested procedures can access vari-
ables found in the main program (that is, global variables) as well as variables 
found in procedures containing the nested procedure (that is, the interme-
diate variables). As you’ve seen, local variable access is inexpensive compared 
to global variable access (because you always have to use a larger offset to 
access global objects within a procedure). Intermediate variable access, as is 
done in the procTwo procedure, is expensive. The difference between local 
and global variable accesses is the size of the offset/displacement coded into 
the instruction—with local variables typically using a shorter offset than is 
possible for global objects. Intermediate accesses, on the other hand, typically 
require several machine instructions. This makes the instruction sequence 
that accesses an intermediate variable several times slower and several times 
larger than accessing a local (or even global) variable.
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The problem with using intermediate variables is that the compiler must 
maintain either a linked list of activation records or a table of pointers to the 
activation records (this table is called the display) in order to reference inter-
mediate objects. To access an intermediate variable, the procTwo procedure 
must either follow a chain of links (there would be only one link in this 
example) or it would have to do a table lookup in order to get a pointer to 
procOne’s activation record. Worse still, maintaining the display of this linked 
list of pointers isn’t exactly cheap. The work needed to maintain these objects 
has to be done on every procedure/function entry and exit, even when the 
procedure or function doesn’t access any intermediate variables on a partic-
ular call. Although there are, arguably, some software engineering benefits 
to using intermediate variables (having to do with information hiding) 
versus a global variable, keep in mind that access to intermediate objects 
is expensive.

8.5.4 Storage Allocation for Dynamic Variables and Pointers
Pointer access in an HLL provides another opportunity for optimization in 
your code. Pointers can be expensive to use but, under certain circumstances, 
they can actually make your programs more efficient by reducing displace-
ment sizes. 

A pointer is simply a memory variable whose value is the address of 
some other memory object (therefore, pointers are the same size as an 
address on the machine). Because most modern CPUs only support 
indirection via a machine register, indirectly accessing an object is typically a 
two-step process: First the code has to load the value of the pointer variable 
into a register and then the program has to refer (indirectly) to the object 
through that register. 

Consider the following C/C++ code fragment and the corresponding 
HLA assembly code: 

    int *pi;

        .

        .

        .

    i = *pi;    // Assume pi is initialized with a 

                //  reasonable address at this point.

And here is the corresponding 80x86/HLA assembly code:

    pi: pointer to int32;

        .

        .

        .

    mov( pi, ebx );     // Again, assume pi has 

    mov( [ebx], eax );  //  been properly initialized

    mov( eax, i );
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Had pi been a regular variable rather than pointer object, this code 
could have dispensed with the mov( [ebx], eax ); instruction. Therefore, the 
use of this pointer variable has both increased the size of the program and 
reduced the execution speed by inserting an extra instruction into the code 
sequence that the compiler generates.

Note that if you indirectly refer to an object several times in close 
succession, then the compiler may be able to reuse the pointer value it has 
loaded into the register, thus amortizing the cost of the extra instruction 
across several different instructions. Consider the following C/C++ code 
sequence and the corresponding HLA code. Here is the C/C++ source code:

    int *pi;

        .

        .   // Assume code in this area 

        .   //  initializes pi appropriately.

        .

    *pi = i;

    *pi = *pi + 2;

    *pi = *pi + *pi;

    printf( "pi = %d\n", *pi );

Here’s the corresponding 80x86/HLA code:

    pi: pointer to int32;

        .

        . // Assume code in this area 

        . //  initializes pi appropriately.

        .

    // Extra instruction that we need to initialize EBX

    mov( pi, ebx );

  

    mov( i, eax );

    mov( eax, [ebx] );  // This code can clearly be optimized; 

    mov( [ebx], eax );  //  we'll ignore that fact for the 

    add( 2, eax );      //  sake of the discussion here.

    mov( eax, [ebx] );

    mov( [ebx], eax );

    add( [ebx], eax );

    mov( eax [ebx] );

    stdout.put( "pi = ", (type int32 [ebx]), nl );

Note that this code loads the actual pointer value into EBX only once. 
From that point forward the code will simply use the pointer value contained 
in EBX to reference the object at which pi is pointing. Of course, any com-
piler that can do this optimization can probably eliminate five redundant 
memory loads and stores from this assembly language sequence, but I’ll 
assume that they aren’t redundant for the time being. The first thing about 
this code you should note is that it didn’t have to reload EBX with the value 
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of pi every time it wanted to access the object at which pi points. Therefore, 
we only have one instruction of overhead (mov( pi, ebx );) amortized across 
six of these instructions. That’s not too bad at all.

Indeed, a good argument could be made that this code is more optimal 
than accessing a local or global variable directly. An instruction of the form

mov( [ebx], eax ); 

uses a 0-bit displacement encoded into the instruction. Therefore, this move 
instruction is only 2 bytes long rather than 3, 5, or even 6 bytes long. If pi is a 
local variable, then it’s quite possible that the original instruction that copies 
pi into EBX is only 3 bytes long (a 2-byte opcode and a 1-byte displacement). 
Because instructions of the form mov( [ebx], eax ); are only 2 bytes long, 
it only takes three instructions to “break even” on the byte count using indirec-
tion rather than an 8-bit displacement. After the third instruction that 
references whatever pi points at, the code involving the pointer is actually 
shorter.

You can even use indirection to provide efficient access to a block of 
global variables. As noted earlier, the compiler generally cannot determine 
the address of a global object while it is compiling your program. Therefore, 
it has to assume the worst case and allow for the largest possible displacement/
offset when generating machine code to access a global variable. Of course, 
you’ve just seen that you can reduce the size of the displacement value from 
32 bits down to 0 bits by using a pointer to the object rather than accessing 
the object directly. Therefore, you could take the address of the global object 
(with the C/C++ & operator, for example) and then use indirection to access 
the variable. The problem with this approach is that it requires a register 
(a precious commodity on any processor, but especially on the 80x86 that has 
only six general-purpose registers to utilize). If you access the same variable 
many times in rapid succession, then this 0-bit displacement trick can make 
your code more efficient. However, it’s somewhat rare to access the same 
variable a large number of times in a short sequence of code without also 
needing to access several other variables. Therefore, the compiler may have 
to flush the pointer from the register and reload the pointer value later 
(thereby reducing the efficiency of this approach). If you’re working on a 
RISC chip with many registers, you can probably employ this trick to your 
advantage. On a processor with a limited number of registers, you won’t be 
able to employ this trick as often.

8.5.5 Using Records/Structures to Reduce Instruction Offset Sizes
There is a trick that you can use to gain access to several variables with a single 
pointer: put all those variables into a structure, and then use the address of 
the structure. By accessing the fields of the structure via the pointer, you can 
get away with using smaller instructions to access the objects. This works 
almost exactly as you’ve seen for activation records (indeed, activation 
records are, literally, records that the program references indirectly via the 
frame-pointer register). About the only difference between accessing objects 
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indirectly in a user-defined record/structure and accessing objects in the 
activation record is that most compilers won’t let you refer to fields in a user 
structure/record using negative offsets. Therefore, you’re limited to about 
half the number of bytes that are normally accessible in an activation record. 
For example, on the 80x86 you can access the object at offset zero from a 
pointer using a 0-bit displacement and objects at offsets 1..+127 using a single 
byte displacement. Consider the following C/C++ example that uses this trick:

typedef struct vars

{

    int i;

    int j;

    char *s;

    char name[20];

    short t;

};

static vars v;

vars *pv = &v;  // Initialize pv with the address of v.

        .

        .

        .

    pv->i = 0;

    pv->j = 5;

    pv->s = &pv->name;

    pv->t = 0;

    strcpy( pv->name, "Write Great Code!" );

        .

        .

        .

A well-designed compiler will load the value of pv into a register exactly 
once for this code fragment. Because all the fields of the vars structure are 
within 127 bytes of the base address of the structure in memory, an 80x86 
compiler can emit a sequence of instructions that require only 1-byte offsets, 
even though the v variable itself is a static/global object. Note, by the way, 
that the first field in the vars structure is special. Because this is at offset zero 
in the structure, this allows the use of a 0-bit displacement when accessing 
this field. Therefore, it’s a good idea to put your most-often-referenced field 
first in a structure if you’re going to refer to that structure indirectly.

Using indirection in your code does come at a cost. On a limited-register 
CPU such as the 80x86, using this trick will tie up a register for some period 
and that may, effectively cause the compiler to generate worse code. If the 
compiler must constantly reload the register with the address of the structure 
in memory, you can watch the savings that this trick buys you evaporate rather 
quickly. When using this trick, you should look at the assembly code the com-
piler generates and verify that you’re actually saving something. Tricks such 
as using pointers to structures vary in effectiveness across different processors 
(and different compilers for the same processor). Therefore, it’s a really good 
idea to look at the code generated by your compiler when using a trick such 
as this in order to make sure that your trick is actually saving you something 
rather than costing you something.
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8.5.6 Register Variables
While on the subject of registers, it’s worthwhile to point out one other 0-bit 
displacement way to access variables in your programs. You can also access 
your variables by keeping them in machine registers. Machine registers are 
always the most efficient place to keep variables and parameters. Unfortu-
nately, only in assembly language and, to a limited extent, C/C++, do you 
have any control over whether the compiler should keep a variable or para-
meter in a register. In some respects, this is not bad. Good compilers do a 
much better job of register allocation than the casual programmer does. 
However, an expert programmer can do a better job of register allocation 
than a compiler because the expert programmer understands the data the 
program will be processing and the frequency of access to a particular mem-
ory location. (And of course, the expert programmer can first look at what 
the compiler is doing, whereas the compiler doesn’t have the benefit of first 
looking at what the expert programmer has done.)

Some languages, such as Delphi and Kylix, provide limited support for 
programmer-directed register allocation. In particular, the Delphi/Kylix 
compilers provide a compiler option that you can use to tell the compiler to 
pass the first three (ordinal) parameters for a function or procedure in the 
EAX, EDX, and ECX registers. This is known as the fastcall calling convention
and several C/C++ compilers support it as well (e.g., Borland’s C++ and 
C++Builder compilers).

In Delphi/Kylix and certain other languages, control of the fastcall 
parameter passing convention is the only control you get. The C/C++ 
language, however, provides the register keyword, a storage specifier (much 
like the const, static, and auto keywords) that tells the compiler that the 
programmer expects to use the variable frequently and the compiler should 
attempt to keep the variable in a register. Note that the compiler can choose 
to ignore the register keyword (in which case the compiler reserves variable 
storage using automatic allocation). Many compilers ignore the register
keyword altogether because the compiler’s authors feel that they can do a 
better job of register allocation than any programmer (a somewhat arrogant 
assumption). Of course, on some register-starved machines such as the 80x86, 
there are so few registers to work with that it might not even be possible to 
allocate a variable to a register throughout the execution of some function. 
Nevertheless, some compilers do respect the programmer’s wishes and will
allocate a few variables in registers if you request that they do so.

Most RISC compilers reserve several registers for passing parameters and 
several registers for local variables. Therefore, it’s a good idea (if possible) to 
place the parameters you access most frequently first in the parameter declara-
tion because they’re probably the ones that the compiler would allocate in a 
register.7 The same is true for local variable declarations. Always declare 
frequently used local variables first because many compilers may allocate 
those (ordinal) variables in registers. 

7 Many optimizing compilers are smart enough to choose which variables they keep in registers 
based on how the program uses those variables.
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One problem with compiler register allocation is that it is static. That is, 
the compiler determines which variables to place in registers based on an 
analysis of your source code during compilation, not during runtime. Com-
pilers often make assumptions (that are usually correct) like “this function 
references variable xyz far more often than any other variable, so it’s a good 
candidate for a register variable.” Indeed, by placing the variable in a register, 
the compiler will certainly reduce the size of the program. However, it could 
also be the case that all those references to xyz sit in code that rarely, if ever, 
executes. Although the compiler might save some space (by emitting 
smaller instructions to access registers rather than memory), the code won’t 
run appreciably faster. After all, if the code rarely or never executes, then 
making that code run faster does not contribute much to the execution time 
of the program. On the other hand, it’s also quite possible to bury a single 
reference to some variable in a deeply nested loop that executes many times. 
With only one reference in the entire function, the compiler’s optimizer may 
overlook the fact that the executing program references the variable fre-
quently. Although compilers have gotten smarter about handling variables 
inside loops, the fact is that no compiler can predict how many times an 
arbitrary loop will execute at runtime. Human beings are much better at 
predicting this sort of behavior (or, at least, measuring it with a profiler); 
therefore, humans are the best ones to make better decisions concerning 
variable allocation in registers.

8.6 Variable Alignment in Memory
On many processors (particularly RISC), there is another efficiency concern 
you must take into consideration. Many modern processors will not let you 
access data at an arbitrary address in memory. Instead, all accesses must take 
place on some native boundary (usually 4 bytes) that the CPU supports. 
Even when a CISC processor allows memory accesses at arbitrary byte 
boundaries, it’s often more efficient to access primitive objects (bytes, 
words, and double words) on a boundary that is a multiple of the 
object’s size (see Figure 8-8).

Figure 8-8: Variable alignment in memory

If the CPU supports unaligned accesses—that is, if the CPU allows you to 
access a memory object on a boundary that is not a multiple of the object’s 
primitive size—then it should be possible to pack the variables into the 
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activation record. This way, you would obtain the maximum number of 
variables having a short offset. However, because unaligned accesses are 
sometimes slower than aligned accesses, many optimizing compilers will 
insert padding bytes into the activation record in order to ensure that all 
variables are aligned on a reasonable boundary for their native size (see 
Figure 8-9). This trades off slightly better performance for a slightly larger 
program.

Figure 8-9: Padding bytes in an 
activation record

However, if you put all your double-word declarations first, your 
word declarations second, your byte declarations third, and your array/
structure declarations last, you can improve both the speed and size of 
your code. The compiler will usually ensure that the first local variable you 
declare appears at a reasonable boundary (typically a double-word bound-
ary). By declaring all your double-word variables first, you ensure that all 
such variables appear at an address that is a multiple of 4 (because compilers 
usually allocate adjacent variables in your declarations in adjacent locations 
in memory). The first word-sized object you declare will also appear at an 
address that is a multiple of 4, and that means its address is also a multiple 
of 2 (which is best for word accesses). By declaring all your word variables 
together, you ensure that each word variable appears at an address that is a 
multiple of 2. On processors that allow byte access to memory, the placement 
of the byte variables (with respect to efficiently accessing the byte data) is 
irrelevant. By declaring all your local byte variables last in a procedure or 
function, you generally ensure that such declarations do not impact the 
performance of the double-word and word variables you also use in the 
function. Figure 8-10 shows what a typical activation record will look like if 
you declare your variables as in the following function.

char oneByte ;

short twoBytes ;

char oneByte2 ;

int fourBytes ;

Activation record produced
by a typical C compiler

oneByte

twoBytes

oneByte2

fourBytes

Offset

--1

--2

--4

--8

Padding bytes
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int someFunction( void )

{

    int d1;   // Assume ints are 32-bit objects

    int d2;

    int d3;

    short w1; // Assume shorts are 16-bit objects

    short w2;

    char b1;  // Assume chars are 8-bit objects

    char b2;

    char b3;

        .

        .

        .

} // end someFunction

Note in Figure 8-10 how all the double-word variables (d1, d2, and d3)
begin at addresses that are multiples of 4 ( 4, 8, and 12). Also, notice how 
all the word-sized variables (w1 and w2) begin at addresses that are multiples 
of 2 ( 14 and 16). The byte variables (b1, b2, and b3) begin at arbitrary 
addresses in memory (both even and odd addresses).

Figure 8-10: Aligned variables in an activation 
record

Now consider the following function that has arbitrary (unordered) 
variable declarations and the corresponding activation record (appearing in 
Figure 8-11): 

int someFunction2( void )

{

Previous
stack

contents

Return address

Old EBP value EBP+0

--4

+4

+8

Offset from EBP

Parameters

d1

d2

d3

w1

w2

b1

b2

b3

--8

--12

--16

--17

--14

--18

--19
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    char b1;  // Assume chars are 8-bit objects

    int d1;   // Assume ints are 32-bit objects

    short w1; // Assume shorts are 16-bit objects

    int d2;

    short w2;

    char b2;

    int d3;

    char b3;

        .

        .

        .

} // end someFunction2

As you can see in Figure 8-11, every variable except the byte variables 
appear at an address that is inappropriate for the object. On processors that 
allow memory accesses at arbitrary addresses, it may take more time to access 
a variable that is not aligned on an appropriate boundary.

Figure 8-11: Unaligned variables in an activation 
record

Some processors do not allow a program to access an object at an 
unaligned address. Most RISC processors, for example, cannot access 
memory except at 32-bit address boundaries. To access a short or byte value, 
some RISC processors require the software to read a 32-bit value and extract 
the 16-bit or 8-bit value (that is, the CPU forces the software to treat bytes 
and words as packed data). The extra instructions and memory accesses 
needed to pack and unpack this data reduce the speed of memory access by a 
considerable amount (that is, two or more instructions—usually more—may 
be needed to fetch a byte or word from memory). Writing data to memory is 
even worse because the CPU must first fetch the data from memory, merge 

Previous
stack

contents

Return address

Old EBP value EBP+0

--1

+4

+8

Offset from EBP

Parameters

--5

--7

--13

--14

--11

--18

--19

d1

d2

d3

w1

w2

b1

b2

b3
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the new data with the old data, and then write the result back to memory. 
Therefore, most RISC compilers won’t create an activation record similar 
to the one in Figure 8-11. Instead, they will add padding bytes so that every 
memory object begins at an address boundary that is a multiple of four bytes 
(see Figure 8-12). 

In Figure 8-12 notice that all of the variables are at addresses that are 
multiples of 32 bits. Therefore, a RISC processor has no problems accessing 
any of these variables. The cost, of course, is that the activation record is 
quite a bit larger (the local variables consume 32 bytes rather than 19 bytes).

Although the example in Figure 8-12 is typical for RISC-based compilers, 
don’t get the impression that compilers for CISC CPUs won’t do this as well. 
Many compilers for the 80x86, for example, will also build this activation 
record in order to improve performance of the code the compiler generates. 
Although declaring your variables in a misaligned fashion may not slow down 
your code on a CISC CPU, it may result in additional memory usage.

Figure 8-12: RISC compilers force aligned access by adding 
padding bytes

Of course, if you work in assembly language, it is generally up to you to 
declare your variables in a manner that is appropriate or efficient for your 
particular processor. In HLA (on the 80x86), for example, the following 
two procedure declarations result in the activation records appearing in 
Figures 8-10, 8-11, and 8-12:

procedure someFunction; @nodisplay; @noalignstack;

var

    d1  :dword;

    d2  :dword;

    d3  :dword;
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stack

contents

Return address

Old EBP value EBP+0

–4

+4

+8

Offset from EBP

d1

d2

d3

w1

w2

b1

b2

Parameters

b3

–8

–12

–20
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–16

–28

–32

Padding bytes
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    w1  :word;

    w2  :word;

    b1  :byte;

    b2  :byte;

    b3  :byte;

begin someFunction;

        .

        .

        .

end someFunction;

procedure someFunction2; @nodisplay; @noalignstack;

var

    b1  :byte;

    d1  :dword;

    w1  :word;

    d2  :dword;

    w2  :word;

    b2  :byte;

    d3  :dword;

    b3  :byte;

begin someFunction2;

        .

        .

        .

end someFunction2;

procedure someFunction3; @nodisplay; @noalignstack;

var

    // HLA align directive forces alignment of the next declaration.

    align(4); 

    b1  :byte;

    align(4);

    d1  :dword;

    align(4);

    w1  :word;

    align(4);

    d2  :dword;

    align(4);

    w2  :word;

    align(4);

    b2  :byte;

    align(4);

    d3  :dword;

    align(4);

    b3  :byte;

begin someFunction3;

        .

        .

        .

end someFunction3;
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HLA procedures someFunction and someFunction3 will produce the fastest-
running code on any 80x86 processor because all variables are aligned on an 
appropriate boundary. HLA procedures someFunction and someFunction2 will 
produce the most compact activation records on an 80x86 CPU because 
there is no padding between variables in the activation record. If you’re 
working in assembly language on a RISC CPU, then you’ll probably want to 
choose the equivalent of someFunction or someFunction3 to make it easier to 
access the variables in memory.

8.6.1 Records and Alignment

Records/structures in HLLs also have alignment issues about which you 
should worry. Recently, CPU manufacturers have been promoting Application 
Binary Interface (ABI) standards to promote interoperability between different 
programming languages and implementations of those languages. Although 
not all languages and compilers adhere to these suggestions, many of the 
newer compilers do. Among other things, these ABI specifications describe 
how the compilers should organize fields within a record or structure object 
in memory. Although the rules vary by CPU, a generic description that is 
applicable to most ABIs is that a compiler should align a record/structure 
field at an offset that is a multiple of the object’s size. If two adjacent fields 
in the record or structure have different sizes, and the placement of the first 
field in the structure would cause the second field to appear at an offset that 
is not a multiple of that second field’s native size, then the compiler will insert 
some padding bytes to push the second field to a higher offset that is appro-
priate for that second object’s size.

In actual practice, ABIs for different CPUs have minor differences based 
on the CPUs’ ability to access objects at different addresses in memory. Intel, 
for example, suggests that compiler writers align bytes at any offset, words 
at even offsets, and everything else at offsets that are a multiple of 4. Some 
ABIs recommend placing 64-bit objects at 8-byte boundaries within a record. 
Some CPUs, which have a difficult time accessing objects smaller than 32 
bits, may suggest a minimum alignment of 32 bits for all objects in a record/
structure. The rules vary depending on the CPU and whether the manu-
facturer wants to promote faster executing code (the usual case) or smaller 
data structures.

If you are writing code for a single CPU (e.g., an Intel-based PC) with a 
single compiler, you should learn that compiler’s rules for padding fields 
and adjust your declarations for maximum performance and minimal waste. 
However, if you ever need to compile your code using several different com-
pilers, particularly compilers for several different CPUs, following one set of 
rules will work fine on one machine and produce less efficient code on 
several others. Fortunately, there are some rules that can help reduce the 
inefficiencies created by recompiling for a different ABI.

From a performance/memory usage standpoint, the best solution is the 
same rule we saw earlier for activation records: When declaring fields in a 
record, group all like-sized objects together and put all the larger (scalar)
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objects first and the smaller objects last in the record/structure.8 This scheme 
will produce the least amount of waste (padding bytes) and provide the high-
est performance across most of the ABIs in existence. The only drawback to 
this approach is that you have to organize the fields by their native size rather 
than by their logical relationship to one another. However, because all fields 
of a record/structure are logically related insofar as they are all members of 
that same record/structure, this problem isn’t as bad as employing this 
organization for all of a particular function’s local variables.

Many programmers try to add padding fields themselves to a structure. 
For example, the following type of code is common in the Linux kernel and 
other bits and pieces of overly hacked software:

typedef struct IveAligned

{

    char byteValue;

    char padding0[3];

    int  dwordValue;

    short wordValue;

    char padding1[2];

    unsigned long dwordValue2;

        .

        .

        .

};

The padding0 and padding1 fields in this structure were added to manually 
align the dwordValue and dwordValue2 fields at offsets that are even multiples of 4. 

While this padding is not unreasonable, if you’re using a compiler that 
doesn’t automatically align the fields, keep in mind that an attempt to compile 
this code in a different machine can produce unexpected results. For exam-
ple, if a compiler aligns all fields on a 32-bit boundary, regardless of size, then 
this structure declaration will consume two extra double words to hold the 
two paddingX arrays. This winds up wasting space for no good reason. So, keep 
this fact in mind if you decide to manually add the padding fields yourself.

Many compilers that automatically align fields in a structure provide an 
option to turn off this facility. This is particularly true for compilers gener-
ating code for CPUs where the alignment is optional and the compiler only 
does this to achieve a slight performance boost. If you’re going to manually 
add padding fields to your record/structure, you obviously need to specify 
this option so that the compiler doesn’t realign the fields after you’ve 
manually aligned them.

In theory, a compiler is free to rearrange the offsets of local variables 
within an activation record. However, it would be extremely rare for a com-
piler to rearrange the fields of a user-defined record or structure. Too many 
external programs and data structures depend on the fields of a record 
appearing in the same order as they are declared. This is particularly true 

8 Generally, arrays and records/structures appearing as fields wind up at the end of the list of 
fields, though you could group arrays with the objects whose size matches the array’s element 
size as well.
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when passing record/structure data between code written in two separate 
languages (for example, when calling a function written in assembly 
language). 

In assembly language, the amount of effort needed to align fields varies 
from pure manual labor to a rich set of features capable of automatically 
handling almost any ABI. Some (low-end) assemblers don’t even provide 
record or structure data types. In such systems, the assembly programmer has 
to manually specify the offsets into a record structure (typically by declaring, 
as constants, the numeric offsets into the structure). Other assemblers (e.g., 
NASM) provide macros that automatically generate the equates for you. In 
such systems as these, the programmer has to manually provide padding 
fields to align certain fields on a given boundary. Some assemblers, such as 
MASM and TASM, provide simple alignment facilities. You can specify the 
value 1, 2, or 4 when declaring a struct in MASM or TASM, and the assembler 
will align all fields on either the alignment value you specify or at an offset 
that is a multiple of the object’s size, whichever is smaller. It accomplishes 
this by automatically adding padding bytes to the structure. Also, note that 
MASM (and TASM) will add a sufficient number of padding bytes to the end 
of the structure so that the whole structure’s length is a multiple of the 
alignment size. Consider the following struct declaration in MASM:

Student  struct  2

score    word    ?   ;offset 0

id       byte    ?   ;offset 2, one byte of padding appears after this field

year     dword   ?   ;offset 4

id2      byte    ?   ;offset 8

Student  ends

In this example, MASM will add an extra byte of padding to the end of 
the structure so that the structure’s length is a multiple of 2 bytes.

MASM and TASM also let you control the alignment of individual fields 
within a structure by using the align directive. The following structure decla-
ration is equivalent to the current example (note the absence of the align-
ment value operand in the struct operand field):

Student  struct

score    word    ?   ;offset 0

id       byte    ?   ;offset 2

         align   2   ;Injects one byte of padding.

year     dword   ?   ;offset 4

id2      byte    ?   ;offset 8

         align   2   ;Adds one byte of padding to the end of the struct.

Student  ends

The default field alignment for MASM/TASM structures is unaligned. 
That is, a field begins at the next available offset within the structure, regard-
less of the field’s (and the previous field’s) size.

The High-Level Assembler (HLA) probably provides the greatest control 
(both automatic and manual) over record field alignment. Like MASM, the 
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default record alignment is unaligned. Also, like MASM, you can use HLA’s 
align directive to manually align fields in an HLA record. The following is 
the HLA version of the previous MASM example:

type

    Student :record

        score :word;

        id    :byte;

        align(2);

        year  :dword;

        id2   :byte;

        align(2);

    endrecord;

HLA also lets you specify an automatic alignment for all fields in a record. 
For example:

type

    Student :record[2]  //This tells HLA to align all 

                        // fields on a word boundary

        score :word;

        id    :byte;

        year  :dword;

        id2   :byte;

    endrecord;

There is a subtle difference between this HLA record and the earlier 
MASM structure (with automatic alignment). When you specify a directive of 
the form Student struct 2 MASM will align all fields on a boundary that is an 
multiple of 2 or a multiple of the object’s size, whichever is smaller. HLA, on 
the other hand, will always align all fields on a 2-byte boundary using this 
declaration, even if the field is a byte.

The fact that you can force field alignment to a minimum size is a nice 
feature if you’re working with data structures generated on a different 
machine (or compiler) that forces this kind of alignment. However, this 
type of alignment can unnecessarily waste space in a record for certain 
declarations if you only want the fields to be aligned on their natural 
boundaries (which is what MASM is doing). Fortunately, HLA provides 
another syntax for record declarations that let you specify both the maximum 
and minimum alignment that HLA will apply to a field. That syntax takes 
the following form:

recordID: record[ maxAlign : minAlign ]

<<fields>>

endrecord;

The maxAlign item specifies the largest alignment that HLA will use within 
the record. HLA will align any object whose native size is larger than maxAlign
on a boundary of maxAlign bytes. Similarly, HLA will align any object whose 
size is smaller than minAlign on a boundary of at least minAlign bytes. HLA 
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will align objects whose native size is between minAlign and maxAlign on a 
boundary that is a multiple of that object’s size. The following HLA and 
MASM record/struct declarations are equivalent. Here’s MASM code:

Student  struct  4

score    word    ?   ;offset:0

id       byte    ?   ;offset 2

; One byte of padding appears here

year     dword   ?   ;offset 4

id2      byte    ?   ;offset:8

; 3 padding bytes appear here

courses  dword   ?   ;offset:12

Student  ends

Here’s the HLA code:

type

    // Align on 4-byte offset, or object's size, whichever

    //  is the smaller of the two. Also, make sure that the

    //  entire record is a multiple of 4 bytes long.

    Student  :record[4:1] 

        score   :word;      

        id      :byte;      

        year    :dword

        id2     :byte;

      courses   :dword;

    endrecord;

Although few HLLs provide facilities within the language’s design to 
control the alignment of fields within records (or other data structures), 
many compilers do provide extensions to those languages, in the form of 
compiler pragmas, that let programmers specifying default variable and field 
alignment. Because there are no standards for this, you’ll have to check 
your particular compiler’s reference manual. Although such extensions 
are nonstandard, they are often quite useful, especially when linking code 
compiled by different languages or if you’re trying to squeeze the last bit of 
performance out of a system.

8.7 For More Information

One of the best places to look for more information on how HLLs imple-
ment variables is a programming language textbook. Dozens of decent 
programming design textbooks are available, for example:

� Programming Languages, Design and Implementation, Terrence Pratt and 
Marvin Zelkowitz (Prentice Hall, 2001)
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� Programming Languages, Principles and Practice, Kenneth Louden (Course 
Technology, 2002)

� Concepts of Programming Languages, Robert Sebesta (Addison-Wesley, 2003)

� Programming Languages, Structures and Models, Herbert Dershem and 
Michael Jipping (Wadsworth, 1990)

� The Programming Language Landscape, Henry Ledgard and Michael 
Marcotty (SRA, 1986)

� Programming Language Concepts, Carlo Ghezzi and Jehdi Jazayeri 
(Wiley, 1997)

Of course, any textbook on compiler design and construction can be a 
source of information about implementating variables in an HLL. Here are a 
few examples of compiler-construction textbooks you may want to consider 
looking at:

� Compilers, Principles, Techniques, and Tools, Alfred Aho, Ravi Sethi, and 
Jeffrey Ullman (Addison-Wesley, 1986)

� Compiler Construction: Theory and Practice, William Barret and John Couch 
(SRA, 1986)

� A Retargetable C Compiler: Design and Implementation, Christopher Fraser 
and David Hansen (Addison-Wesley Professional, 1995)

� Introduction to Compiler Design, Thomas Parsons (W. H. Freeman, 1992)

� Compiler Construction, Principles and Practice, Kenneth Louden (Course 
Technology, 1997)

CPU manufacturers’ literature, data sheets, and books are also quite useful 
for determining how compilers will often implement variables. For example, 
The PowerPC Compiler Writer’s Guide, edited by Steve Hoxey, Faraydon Karim, 
Bill Hay, and Hank Warren,9 is a great reference for programmers writing 
code to run on a PowerPC processor; most PowerPC compiler writers have 
used this reference to help them decide how to generate code for the PowerPC 
processor. Similarly, many compiler writers have used Intel’s Pentium manual 
set (including their Optimization Guide) to help them write code generators 
for their compilers. These manuals may prove handy to someone who wants 
to understand how 80x86-based compilers generate code.

Of course, the ultimate suggestion is to learn assembly language. If you 
become an expert assembly language programmer, someone who knows 
the intricacies of all the machine instructions for a particular processor, 
then you’ll have a much better understanding of how a compiler will 
generate code for that processor. If you’re interested in learning 80x86 
assembly language, you might consider The Art of Assembly Language (No 
Starch Press, 2003).

9 This document is available in PDF format on IBM’s website (www.ibm.com).


