
8
V A R I A B L E S I N A H I G H - L E V E L

L A N G U A G E

This chapter will explore the low-level
implementation of variables found in high-

level languages. Although assembly language
programmers usually have a good feel for the

connection between variables and memory locations,
high-level languages add sufficient abstraction to
obscure this relationship. This chapter will cover
the following topics:
� The runtime memory organization typical for most compilers

� How the compiler breaks up memory into different sections and how
the compiler places variables into each of those sections

� The attributes that differentiate variables from other objects

� The difference between static, automatic, and dynamic variables

� How compilers organize automatic variables in a stack frame

� The primitive data types that hardware provides for variables

� How machine instructions encode the address of a variable

190 Chap te r 8

When you finish reading this chapter, you should have a good under-
standing of how to declare variables in your program to use the least amount
of memory and produce fast-running code.

8.1 Runtime Memory Organization

An operating system like Linux or Windows puts different types of data into
different areas (sections or segments) of main memory. Although it is possible
to control the memory organization by running a linker and specifying
various command-line parameters, by default Windows loads a typical
program into memory using the organization appearing in Figure 8-1
(Linux is similar, although it rearranges some of the sections).

Figure 8-1: Typical runtime memory organization for Windows

The operating system reserves the lowest memory addresses. Generally,
your application cannot access data (or execute instructions) at the lowest
addresses in memory. One reason the OS reserves this space is to help detect
NULL pointer references. Programmers often initialize pointers with NULL
(zero) to indicate that the pointer is not valid. Should you attempt to access
memory location zero under such an operating system, the OS will generate
a general protection fault to indicate that you’ve accessed an invalid memory
location.

The remaining six areas in the memory map hold different types of data
associated with your program. These sections of memory include the stack
section, the heap section, the code section, the constant section, the initial-
ized static-object section, and the uninitialized data section. Each of these
memory sections corresponds to some type of data you can create in your
programs.

Most of the time, a given application can live with the default layouts
chosen for these sections by the compiler and linker/loader. In some cases,
however, knowing the memory layout can allow you to develop shorter pro-
grams. For example, because the code section is usually read-only, it might

High addresses

Adrs = $0

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Constants (not user accessible)

Reserved by OS (typically 128KB)

Var iab le s in a High -Leve l Language 191

be possible to combine the code, constant, and read-only data sections into a
single section, thereby saving any padding space that the compiler/linker
may place between these sections. Although for large applications this is
probably insignificant, for small programs it can have a big impact on the
size of the executable.

The following sections discuss each of these sections in detail.

8.1.1 The Code, Constant, and Read-Only Sections
The code section in memory contains the machine instructions for a pro-
gram. Your compiler translates each statement you write into a sequence of
one or more byte values (machine instruction opcodes). The CPU interprets
these opcode values during program execution.

Most compilers also attach a program’s read-only data and constant pool
(constant table) sections to the code section because, like the code instruc-
tions, the read-only data is already write-protected. However, it is perfectly
possible under Windows, Linux, and many other operating systems to create
a separate section in the executable file and mark it as read-only. As a result,
some compilers do support a separate read-only data section, and some com-
pilers even create a different section (the constant pool) for the constants that
the compiler emits. Such sections contain initialized data, tables, and other
objects that the program should not change during program execution.

Many compilers will generate multiple code sections and leave it up to
the linker to combine those sections into a single code segment prior to exe-
cution. To understand why a compiler might do this, consider the following
short Pascal code fragment:

 if(SomeBooleanExpression) then begin

 << Some code that executes 99.9% of the time >>

 end

 else begin

 << Some code that executes 0.1% of the time >>

 end;

Without worrying about how it does so, assume that the compiler can
figure out that the then section of this if statement executes far more often
than the else section. An assembly programmer, wanting to write the fastest
possible code, might encode this sequence as follows:

 << evaluate Boolean expression, leave True/False in EAX >>

 test(eax, eax);

 jz exprWasFalse;

 << Some code that executes 99.9% of the time >>

rtnLabel:

 << Code normally following the last END in the

 Pascal example >>

192 Chap te r 8

 .

 .

 .

// somewhere else in the code, not in the direct execution path

// of the above:

exprWasFalse:

 << Some code that executes 0.1% of the time >>

 jmp rtnLabel;

This assembly code might seem a bit convoluted, but keep in mind
that any control transfer instruction is probably going to consume a lot of
time because of pipelined operation on modern CPUs (see Write Great Code,
Volume 1, for the details). Code that executes without branching (or that falls
straight through) executes the fastest. In the previous example, the common
case falls straight through 99.9 percent of the time. The rare case winds up
executing two branches (one to transfer to the else section and one to return
back to the normal control flow). But because this code rarely executes, it
can afford to take longer to execute.

Many compilers use a little trick to move sections of code around
like this in the machine code they generate—they simply emit the
code in a sequential fashion, but they place the else code in a separate
section. Here’s some MASM code that demonstrates this principle in
action:

 << evaluate Boolean expression, leave True/False in EAX >>

 test eax, eax

 jz exprWasFalse

 << Some code that executes 99.9% of the time >>

alternateCode segment

 << Some code that executes 0.1% of the time >>

 jmp rtnLabel;

alternateCode ends

rtnLabel:

 << Code normally following the last END in the Pascal example >>

Even though the else section code appears to immediately follow the then
section’s code, placing it in a different segment tells the assembler/linker to
move this code and combine it with other code in the alternateCode segment.
This little trick, which relies upon the assembler or linker to do the code
movement, can simplify HLL compilers. GCC, for example, uses this trick to
move code around in the assembly language file it emits. As a result, you’ll
see this trick being used on occasion. Therefore, expect some compilers to
produce multiple code segments.

Var iab le s in a High -Leve l Language 193

8.1.2 The Static Variables Section
Many languages provide the ability to initialize a global variable during the
compilation phase. For example, in the C/C++ language, you could use
statements like the following to provide initial values for these static objects:

static int i = 10;
static char ch[] = ('a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler will place these initial
values in the executable file. When you execute the application, the oper-
ating system will load the portion of the executable file that contains these
static variables into memory so that the values appear at the addresses asso-
ciated those variables. Therefore, when the program first begins execution,
i and ch will magically have these values bound to them.

The static section is often called the DATA or _DATA segment in the assembly
listings that most compilers produce. As an example, consider the following
C code fragment and the TASM assembly code that the Borland C++ com-
piler produces for it:

#include <stdlib.h>

#include <stdio.h>

static char *c = NULL;

static int i = 0;

static int j = 1;

static double array[4] = {0.0, 1.0, 2.0, 3.0};

int main(void)

{

 .

 .

 .

And here’s the assembly code emitted by the Borland C++ compiler for
the declarations in this C example:

_DATA segment dword public use32 'DATA'

 align 4

_c label dword

 dd 0

 align 4

_i label dword

 dd 0

 align 4

_j label dword

 dd 1

 align 4

194 Chap te r 8

_array label qword

 db 0,0,0,0,0,0,0,0

 db 0,0,0,0,0,0,240,63

 db 0,0,0,0,0,0,0,64

 db 0,0,0,0,0,0,8,64

_DATA ends

As you can see in this example, Borland’s C++ compiler places these
variables in the _DATA segment.

8.1.3 The BSS Section
Most operating systems will zero out memory prior to program execution.
Therefore, if an initial value of zero is suitable, you don’t need to waste any
disk space with the static object’s initial value. Generally, however, compilers
treat uninitialized variables in a static section as though you’ve initialized
them with zero, thereby consuming disk space. Some operating systems
provide another section type, the BSS section, to avoid this waste of disk
space.

The BSS section is where compilers typically put static objects that don’t
have an explicit initial value. BSS stands for block started by a symbol, and it is
an old assembly language term describing a pseudo-opcode you would use to
allocate storage for an uninitialized static array. In modern operating systems
like Windows and Linux, the OS allows the compiler/linker to put all unini-
tialized variables into a BSS section that simply tells the OS how many bytes
to set aside for that section. When the operating system loads the program
into memory, it reserves sufficient memory for all the objects in the BSS sec-
tion and fills this range of memory with zeros. It is important to note that the
BSS section in the executable file doesn’t contain any actual data. For this
reason, programs that declare large uninitialized static arrays in a BSS sec-
tion will consume less disk space. The following is the C/C++ example from
the previous section, modified to remove the initializers so that the compiler
will place the variables in the BSS section:

#include <stdlib.h>

#include <stdio.h>

static char *c;

static int i;

static int j;

static double array[4];

int main(void)

{

 .

 .

 .

Var iab le s in a High -Leve l Language 195

Here is the Borland C++ output:

_BSS segment dword public use32 'BSS'

 align 4

_c label dword

 db 4 dup(?)

 align 4

_i label dword

 db 4 dup(?)

 align 4

_j label dword

 db 4 dup(?)

 align 4

_array label qword

 db 32 dup(?)

_BSS ends

Not all compilers use a BSS section. Many Microsoft languages and linkers,
for example, simply combine the uninitialized objects with the static/data
section and explicitly give them an initial value of zero. Although Microsoft
claims that this scheme is faster, it certainly makes executable files larger if
your code has large, uninitialized arrays (because each byte of the array winds
up in the executable file, something that would not happen if the compiler
were to place the array in a BSS section). Note, however, that this is a default
condition and you can change this by setting the appropriate linker flags.

8.1.4 The Stack Section
The stack is a data structure that expands and contracts in response to
procedure invocations and returns, among other things. At runtime, the
system places all automatic variables (nonstatic local variables), subroutine
parameters, temporary values, and other objects in the stack section of
memory in a special data structure called the activation record (the activation
record is aptly named because the system creates an activation record when a
subroutine first begins execution and deallocates the activation record when
the subroutine returns to its caller). Therefore, the stack section in memory
is very busy.

Many CPUs implement the stack using a special-purpose register called
the stack pointer. Other CPUs (particularly RISC) don’t provide an explicit
stack pointer and, instead, use a general-purpose register for this purpose.
If a CPU provides an explicit stack pointer register, we say that the CPU
supports a hardware stack; if a program uses a general-purpose register for
this purpose, then we say that the CPU uses a software-implemented stack.
The 80x86 is a good example of a CPU that provides a hardware stack—the
PowerPC family is a good example of a CPU family that implements the stack
in software (most PowerPC programs use R1 as the stack pointer register).
Systems that provide hardware stacks can generally manipulate data on

196 Chap te r 8

the stack using fewer instructions than systems that implement the stack in
software. On the other hand, RISC CPU designers who’ve chosen to use
a software stack implementation feel that the presence of a hardware stack
actually slows down all instructions the CPU executes. In theory, you could
argue that the RISC designers are right; in practice, the 80x86 family includes
some of the fastest CPUs around, providing ample proof that having a
hardware stack doesn’t necessarily mean you’ll wind up with a slow CPU.

8.1.5 The Heap Section and Dynamic Memory Allocation
Although simple programs may only need static and automatic variables,
sophisticated programs need the ability to allocate and deallocate storage
dynamically (at runtime) under program control. In the C and High-Level
Assembler (HLA) languages, you would use the malloc and free functions for
this purpose. C++ provides the new and delete operators. Pascal uses new and
dispose. Other languages provide comparable routines. These memory-
allocation routines share a few things in common:

� They let the programmer request how many bytes of storage to allocate.

� They return a pointer to the newly allocated storage (that is, the address
of that storage).

� They provide a facility for returning the storage space to the system once it
is no longer needed so the system can reuse it in a future allocation call.

Dynamic memory allocation takes place in a section of memory known as
the heap. Generally, an application refers to data on the heap using pointer
variables, either implicitly or explicitly; some languages, like Java, implicitly
use pointers behind the programmer’s back. As such, these objects in heap
memory are usually referred to as anonymous variables because they are referred
to by their memory address (via pointers) rather than by a name.

The OS and application create the heap section in memory after the
program begins execution; the heap is never a part of the executable file.
Generally, the operating system and language runtime libraries maintain
the heap for an application. Despite the variations in memory management
implementations, it’s still a good idea for you to have a basic idea of how
heap allocation and deallocation operate because an inappropriate use of
the heap management facilities will have a very negative impact on the
performance of your applications.

8.2 What Is a Variable?

If you consider the word variable, it should be obvious that it describes some-
thing that varies. But exactly what is it that varies? To most programmers the
answer will seem obvious: it’s the value that can vary during program execu-
tion. In fact, there are several things that can vary, so before attempting to
describe what a variable is, it is probably a good idea to discuss some attri-
butes that variables (and other objects) may possess. To do this, I must first
define attribute, binding, static objects, dynamic objects, scope, and lifetime.

Var iab le s in a High -Leve l Language 197

8.2.1 Attributes
An attribute is some feature that is associated with an object. For example,
common attributes of a variable include that variable’s name, its memory
address, its runtime value, a data type associated with that value, and the size
(in bytes) of that variable. Different objects may have different sets of attri-
butes. For example, a data type is an object that possesses attributes such as a
name and size, but it won’t usually have a value or memory location associ-
ated with it. A constant can have attributes such as a value and a data type, but
it does not have a memory location and it might not have a name (for exam-
ple, if it is a literal constant). A variable may possess all of these attributes.
Indeed, the attribute list usually determines whether an object is a constant,
data type, variable, or something else.

8.2.2 Binding
Binding is the process of associating an attribute with an object. For example,
when a value is assigned to a variable, the value is bound to that variable at the
point of the assignment. The value remains bound to the variable until some
other value is bound to it (via another assignment operation). Likewise, if
you allocate memory for a variable while the program is running, the variable
is bound to the memory address at that point. The variable and address are
bound until you associate a different address with the variable. Binding
needn’t occur at runtime. For example, values are bound to constant objects
during compilation, and such bindings cannot change while the program is
running. Similarly, some variables can have their address bound to them at
compile time, and the memory address cannot change during program
execution.

8.2.3 Static Objects
Static objects have an attribute bound to them prior to the execution of the
application. Constants are good examples of static objects; they have the
same value bound to them throughout the execution of the application.
Global (program-level) variables in programming languages like Pascal, C/
C++, and Ada are also examples of static objects because they have the same
memory address bound to them throughout the program’s lifetime. The
system binds attributes to a static object before the program begins execu-
tion (usually during compilation or during the linking phase, though it is
possible to bind values even earlier).

8.2.4 Dynamic Objects
Dynamic objects have some attribute bound to them during program execu-
tion. The program may choose to change that attribute (dynamically) while
the program is running. Dynamic attributes usually cannot be determined at
compile time. Examples of dynamic attributes include values bound to vari-
ables at runtime and memory addresses bound to certain variables at runtime
(e.g., via a malloc or other memory allocation function call).

198 Chap te r 8

8.2.5 Scope
The scope of an identifier is that section of the program where the identifier’s
name is bound to the object. Because names in most compiled languages
exist only during compilation, scope is usually a static attribute (although in
some languages it is possible for scope to be a dynamic attribute). By con-
trolling where a name is bound to an object, it is possible to reuse that name
elsewhere in the program.

Most modern imperative programming languages (e.g., C/C++/C#, Java,
Pascal, and Ada) support the concept of local and global variables. A local
variable’s name is bound to a particular object only within a given section of
a program (for example, within a particular function). Outside the scope of
that object, the name can be bound to a different object. This allows a global
and a local object to share the same name without any ambiguity. This may
seem potentially confusing, but being able to reuse variable names like i or j
throughout a project can spare the programmer from having to dream up
equally meaningless unique variable names for loop indexes and other uses
in the program. The scope of the object’s declaration determines where the
name applies to a given object.

In interpretive languages, where the interpreter maintains the identifier
names during program execution, scope can be a dynamic attribute. For
example, in various versions of the BASIC programming language, the dim
statement is an executable statement. Prior to the execution of dim, the name
you define might have a completely different meaning than it does after
executing dim. SNOBOL4 is another language that supports dynamic scope.
Generally, most programming languages avoid dynamic scope because
using it can result in difficult-to-understand programs—but the fact that
most languages avoid dynamic scope doesn’t mean it doesn’t exist.

In general, scope can apply to any attribute, not just names. In this book,
however, I’ll only use the term scope to describe where a name is associated
with a given variable.

8.2.6 Lifetime
The lifetime of an attribute extends from the point when you first bind an
attribute to an object to the point you break that bond, perhaps by binding
a different attribute to the object. If the program associates some attribute
with an object and never breaks that bond, the lifetime of the attribute is
from the point of association to the point the program terminates. For
example, the lifetime of a variable is from the time you first allocate
memory for the variable to the moment you deallocate that variable’s
storage. As a program binds static objects prior to execution (and such
attributes do not change during program execution), the lifetime of a
static object extends from when the program begins execution to when
the application terminates.

Var iab le s in a High -Leve l Language 199

8.2.7 So What Is a Variable?
A variable is an object that can have a value bound to it dynamically. That is,
the program can change the variable’s value attribute at runtime. Note the
operative word can. It is only necessary for the program to be able to change
a variable’s value at runtime; it doesn’t have to bind multiple values in order
to consider the object a variable.

Dynamic binding of a value to an object is the defining attribute of a
variable, though other attributes may be dynamic or static. For example, the
memory address of a variable can be statically bound to the variable at compile
time or dynamically bound at runtime. Likewise, variables in some languages
have dynamic types that change during program execution, while other
variables have static types that remain fixed over the execution of a given
program. Only the binding of the value determines whether the object is a
variable or something else (such as a constant).

8.3 Variable Storage

Values must be stored in and retrieved from memory. To do this, a compiler
must bind a variable to one or more memory locations. The variable’s type
determines the amount of storage it requires. Character variables may require
as little as a single byte of storage, while large arrays or records can require
thousands or millions of bytes of storage. To associate a variable with some
memory, a compiler (or runtime system) binds the address of that memory
location to that variable. When a variable requires two or more memory loca-
tions, the system will usually bind the address of the first memory location to
the variable and assume that the contiguous locations following that address
are also bound to the variable at runtime.

Three types of bindings are possible between variables and memory
locations: static binding, pseudo-static (automatic) binding, and dynamic
binding. Variables are generally classified as static, automatic, or dynamic based
upon how the variable is bound to its memory location.

8.3.1 Static Binding and Static Variables
Static binding occurs prior to runtime, at one of four possible times: at
language-design time, at compile time, at link time, or when the system loads
the application into memory (but prior to execution). Binding at language
design time is not all that common, but it does occur in some languages
(especially assembly languages). Binding at compile time is common in
assemblers and compilers that directly produce executable code. Binding at
link time is fairly common (for example, some Windows compilers do this).
Binding at load time, when the operating system copies the executable into
memory, is probably the most common for static variables.

200 Chap te r 8

8.3.1.1 Binding at Language-Design Time

An address can be assigned at language-design time when a language
designer associates a language-defined variable with a specific hardware
address (for example, an I/O device or a special kind of memory), and
that address never changes in any program. Such objects are common in
embedded systems and rarely found in applications on general-purpose
computer systems. For example, on an 8051 microcontroller, many C
compilers and assemblers automatically associate certain names with fixed
locations in the 128 bytes of data space found on the CPU. CPU register
references in assembly language are good example of variables bound to
some location at language-design time.

8.3.1.2 Binding at Compile Time

An address can be assigned at compile-time when the compiler knows the
memory region where it can place static variables at runtime. Generally, such
compilers generate absolute machine code that must be loaded at a specific
address in memory prior to execution. Most modern compilers generate
relocatable code and, therefore, don’t fall into this category. Nevertheless,
lower-end compilers, high-speed student compilers, and compilers for
embedded systems often use this binding technique.

8.3.1.3 Binding at Link Time

Certain linkers (and related tools) have the ability to link together various
relocatable object modules of an application and create an absolute load
module. So while the compiler produces relocatable code, the linker binds
memory addresses to the variables (and machine instructions). Usually, the
programmer specifies (via command-line parameters or a linker script file) the
base address of all the static variables in the program; the linker will bind
the static variables to consecutive addresses starting at the base address.
Programmers who are placing their applications in ROM memory (such as
a BIOS ROM for a PC) often employ this scheme.

8.3.1.4 Binding at Load Time

The most common form of static binding occurs at load time. Executable
formats such as Microsoft’s PE/COFF and Linux’s ELF usually contain
relocation information embedded in the executable file. The operating
system, when it loads the application into memory, will decide where to place
the block of static variable objects and will then patch all the addresses within
instructions that reference those static objects. This allows the loader (for
example, the operating system) to assign a different address to a static object
each time it loads it into memory.

8.3.1.5 Static Variable Binding

A static variable is one that has a memory address bound to it prior to pro-
gram execution. Static variables enjoy a couple of advantages over other
variable types. Because the compiler knows the address of the variable prior
to runtime, the compiler can often use an absolute addressing mode or some

Var iab le s in a High -Leve l Language 201

other simple addressing mode to access that variable. Static variable access is
often more efficient than other variable accesses because no additional setup
is needed to access a static variable.1

Another feature of static variables is that they retain any value bound to
them until you explicitly bind another value or until the program terminates.
This means that static variables retain values while other events (such as
procedure activation and deactivation) occur. Different threads in a multi-
threaded application can also share data using static variables.

Static variables also have a few disadvantages worth mentioning. First
of all, because the lifetime of a static variable matches that of the program,
static variables consume memory the entire time the program is running.
This is true even if the program no longer requires the value held by the
static object. Another disadvantage to static variables (particularly when
using the absolute addressing mode) is that the entire absolute address must
usually be encoded as part of the instruction, making the instruction much
larger. Indeed, on most RISC processors an absolute addressing mode isn’t
even available because you cannot encode an absolute address in a single
instruction.

Another disadvantage to using static variables is that code that uses static
objects is not reentrant (meaning two threads or processes can be concurrently
executing the same code sequence); more effort is required to use that code
in a multithreaded environment (where two copies of a section of code could
be executing simultaneously, both accessing the same static object). However,
multithreaded operation introduces a lot of complexity that I don’t want to
get into here, so I’ll ignore this issue for now. See any good textbook on oper-
ating system design or concurrent programming for more details concerning
the use of static objects. Foundations of Multithreaded, Parallel, and Distributed
Programming by Gregory R. Andrews (Addison-Wesley, 1999) is a good place
to start.

The following example demonstrates the use of static variables in a C
program and shows the 80x86 code that the Borland C++ compiler generates
to access those variables:

#include <stdio.h>

static int i = 5;

static int j = 6;

int main(int argc, char **argv)

{

 i = j + 3;

 j = i + 2;

 printf("%d %d", i, j);

 return 0;

1 At least, on an 80x86 CPU or some other CPU that supports absolute addresses. Some RISC
processors do not support absolute addressing, so the program must set up a “static frame
pointer” or “global frame register” when the program first begins execution, but this only has to
be done once, so we can ignore the performance issues associated with this.

202 Chap te r 8

}

; Following are the memory declarations

; for the 'i' and 'j' variables. Note that

; these are declared in the global '_DATA'

; section.

_DATA segment dword public use32 'DATA'

 align 4

_i label dword

 dd 5

 align 4

_j label dword

 dd 6

_DATA ends

_TEXT segment dword public use32 'CODE'

_main proc near

?live1@0:

 ;

 ; int main(int argc, char **argv)

 ;

 push ebp

 mov ebp,esp

 ;

 ; {

 ;

 ; i = j + 3;

 ;

@1:

 ; Load the EAX register with the

 ; current value of the global _j

 ; variable using the displacement-only

 ; addressing mode, add three to the

 ; value, and store into '_i':

 mov eax,dword ptr [_j]

 add eax,3

 mov dword ptr [_i],eax

 ;

 ; j = i + 2;

 ;

 ; Load the EDX register with the

 ; current value of the '_i' global

 ; variable using the displacement-

 ; only addressing mode, add two to

 ; this value, and store into

 ; '_j':

 mov edx,dword ptr [_i]

 add edx,2

 mov dword ptr [_j],edx

Var iab le s in a High -Leve l Language 203

 ;

 ; printf("%d %d", i, j);

 ;

 push dword ptr [_j]

 push dword ptr [_i]

 push offset s@

 call _printf

 add esp,12

 ;

 ; return 0;

 ;

 ; xor eax, eax sets the main function

 ; return value to zero.

 xor eax,eax

 ;

 ; }

 ;

@3:

@2:

 pop ebp

 ret

_main endp

_TEXT ends

_DATA segment dword public use32 'DATA'

; s@ is a string used by the printf function:

s@ label byte

 ; s@+0:

 db "%d %d",0

 align 4

_DATA ends

As the comments point out, the assembly language code the compiler
emits uses the displacement-only addressing mode to access all the static
variables.

8.3.2 Pseudo-Static Binding and Automatic Variables
Automatic variables have an address bound to them when a procedure or
other block of code begins execution. The program releases that storage
when the block or procedure completes execution. Such objects are called
automatic variables because the runtime code automatically allocates and
deallocates storage for them, as needed.

In most programming languages, automatic variables use a combination
of static and dynamic binding known as pseudo-static binding. The compiler
assigns an offset from a base address to a variable name during compilation.
At runtime the offset always remains fixed, but the base address can vary.
For example, a procedure or function allocates storage for a block of local
variables and then accesses the local variables at fixed offsets from the start

204 Chap te r 8

of that block of storage. Although the compiler cannot determine the final
memory address of the variable at runtime, it can select an offset that never
changes during program execution, hence the name pseudo-static.

Some programming languages use the term local variables in place of
automatic variables. A local variable is one whose name is statically bound to
a given procedure or block (that is, the scope of the name is limited to that
procedure or block of code). Therefore, local is a static attribute in this con-
text. It’s easy to see why the terms local variable and automatic variable are
often confused. In some programming languages, such as Pascal, local
variables are always automatic variables and vice versa. Nonetheless, always
keep in mind that the local attribute is a static attribute, while the automatic
attribute is a dynamic one.

Automatic variables have a couple of important advantages. First, they
only consume storage while the procedure or block containing them is
executing. This allows multiple blocks and procedures to share the same
pool of memory for their automatic variable needs. Although some extra
code must execute in order to manage automatic variables (in a memory
structure known as an activation record), this only requires a few machine
instructions on most CPUs and only has to be done once for each procedure/
block entry and exit. While in certain circumstances, the cost can be signifi-
cant, the extra time and space needed to set up and tear down the activation
record is usually inconsequential. Another advantage of automatic variables
is that they often use a base-plus-offset addressing mode, where the base of
the activation record is kept in a register and the offsets into the activation
record are small (often 256 bytes or fewer). Therefore, CPUs don’t have to
encode a full 32-bit or 64-bit address as part of the machine instruction—
just an 8-bit (or other small) displacement, yielding shorter instructions. It’s
also worth noting that automatic variables are “thread-safe,” and code that
uses automatic variables can be reentrant. This is because each thread main-
tains its own stack space (or similar data structure) where compilers maintain
automatic variables; therefore, each thread will have its own copy of any auto-
matic variables the program uses.

Automatic variables do have some disadvantages. If you want to initialize
an automatic variable, you have to use machine instructions to do so. You
cannot initialize an automatic variable, as you can static variables, when the
program loads into memory. Also, any values maintained in automatic vari-
ables are lost whenever you exit the block or procedure containing them. As
noted in the previous paragraph, automatic variables require a small amount
of overhead; some machine instructions must execute in order to build and
destroy the activation record containing those variables.

Here’s a short C example that uses automatic variables and the 80x86
assembly code that the Microsoft Visual C++ compiler produces for it:

#include <stdio.h>

int main(int argc, char **argv)

{

Var iab le s in a High -Leve l Language 205

 int i;

 int j;

 j = 1;

 i = j + 3;

 j = i + 2;

 printf("%d %d", i, j);

 return 0;

}

Assembly code emitted for the previous C code:

; Data emitted for the string constant

; in the printf function call:

_DATA SEGMENT

$SG790 DB '%d %d', 00H

_DATA ENDS

PUBLIC _main

EXTRN _printf:NEAR

; Function compile flags: /Ods

_TEXT SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main PROC NEAR

; File g:\t.c

; Line 7

;

; Build the "activation record" that

; holds the automatic (local) variables:

 push ebp

 mov ebp, esp

 push ecx ; Storage for _i on stack

 push ecx ; Storage for _j on stack

; Line 13 // j = 1;

 mov DWORD PTR _j$[ebp], 1

; Line 14 // i = j + 3;

 mov eax, DWORD PTR _j$[ebp]

 add eax, 3

 mov DWORD PTR _i$[ebp], eax

; Line 15 // j = i + 2;

206 Chap te r 8

 mov eax, DWORD PTR _i$[ebp]

 inc eax

 inc eax

 mov DWORD PTR _j$[ebp], eax

; Line 16 // printf function call

 push DWORD PTR _j$[ebp]

 push DWORD PTR _i$[ebp]

 push OFFSET FLAT:$SG790

 call _printf

 add esp, 12 ; 0000000cH

; Line 17 // Return zero as function result.

 xor eax, eax

; Line 18 // Deallocates activation record

 leave

; Returns from main.

 ret 0

_main ENDP

_TEXT ENDS

Note that when accessing automatic variables, the assembly code uses
a base-plus-displacement addressing mode (for example, _j$[ebp]). This
addressing mode is often shorter than the displacement-only addressing
mode that static variables use (assuming, of course, that the offset to the
automatic object is within 127 bytes of the base address held in EBP).

8.3.3 Dynamic Binding and Dynamic Variables
A dynamic variable is one that has storage bound to it at runtime. In some
languages, the application programmer is completely responsible for bind-
ing addresses to dynamic objects; in other languages, the runtime system
automatically allocates and deallocates storage for a dynamic variable.

Dynamic variables are generally those allocated on the heap via a memory
allocation function such as malloc or new. The compiler has no way of deter-
mining the runtime address of a dynamic object. Therefore, the program
must always refer to a dynamic object indirectly by using a pointer.

The big advantage to dynamic variables is that the application controls
their lifetimes. Dynamic variables consume storage only as long as necessary,
and the runtime system can reclaim that storage when the variable no longer
requires it. Unlike automatic variables, the lifetime of a dynamic variable is
not tied to the lifetime of some other object, such as a procedure or code
block entry and exit. Memory is bound to a dynamic variable at the point

Var iab le s in a High -Leve l Language 207

the variable first needs it, and the memory can be released at the point the
variable no longer needs it.2 For variables that require considerable storage,
dynamic allocation can make efficient use of memory as dynamically allo-
cated variables hold onto the memory only as long as necessary.

Another advantage to dynamic variables is that most code references
dynamic objects using a pointer. If that pointer value is already sitting in a
CPU register, the program can usually reference that data using a short
machine instruction, requiring no extra bits to encode an offset or address.

Dynamic variables have several disadvantages. First, usually some storage
overhead is necessary to maintain dynamic variables. Static and automatic
objects usually don’t require extra storage associated with each such variable
appearing in a program; the runtime system, on the other hand, often requires
some number of bytes to keep track of each dynamic variable present in the
system. This overhead ranges anywhere from 4 or 8 bytes to many dozens of
bytes (in an extreme case) and keeps track of things like the current memory
address of the object, the size of the object, and its type. If you’re allocating
small objects, like integers or characters, the amount of storage required for
bookkeeping purposes could exceed the storage that the actual data requires.
Also, most languages reference dynamic objects using pointer variables; as
such, some additional storage is required by the pointer variable above and
beyond the actual storage for the dynamic data.

Another problem with dynamic variables is performance. Because
dynamic data is usually found in memory, the CPU has to access memory
(which is slower than cached memory) on nearly every dynamic variable
access.3 Even worse, accessing dynamic data often requires two memory
accesses—one to fetch the pointer’s value and one to fetch the dynamic data,
indirectly through the pointer. Another problem is that managing the heap,
the place where the runtime system keeps the dynamic data, can also be
expensive. Whenever an application requests storage for a dynamic object,
the runtime system has to search for a contiguous block of free memory
large enough to satisfy the request. This search operation can be expensive,
depending on the organization of the runtime heap (which affects the
amount of overhead storage associated with each dynamic variable). Further-
more, when releasing a dynamic object, the runtime system may need to
execute some code in order to make that storage available for use by other
dynamic objects. These runtime heap allocation and deallocation operations
are usually far more expensive than allocating and deallocating a block of
automatic variables during procedure entry/exit.

Another problem with dynamic variables that should be considered here
is that some languages (e.g., Pascal and C/C++) require the application pro-
grammer to explicitly allocate and deallocate storage for dynamic variables.
Because the allocation and deallocation is not automatic, defects can creep
into the code because of errors made by the application programmer. This is

2 In practice, many runtime systems will not bother breaking the address binding until the
system actually needs the storage for another purpose, but this issue is not important here.
3 Some compilers are smart enough to keep some dynamic data in registers, avoiding memory
in certain cases, but in many cases the runtime code will have to access main memory when
referencing dynamic data.

208 Chap te r 8

why languages such as C# attempt to handle dynamic allocation automatically
for the programmer, even though this can be more expensive (slower).
Here’s a short example in C that demonstrates the kind of code that the
Microsoft Visual C++ compiler will generate in order to access dynamic
objects allocated with malloc.

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv)

{

 int *i;

 int *j;

 i = malloc(sizeof(int));

 j = malloc(sizeof(int));

 *i = 1;

 *j = 2;

 printf("%d %d", *i, *j);

 free(i);

 free(j);

 return 0;

}

Here’s the machine code the compiler generates, including manually
inserted comments that describe the extra work needed to access dynamically
allocated objects:

_DATA SEGMENT

$SG1139 DB '%d %d', 00H

_DATA ENDS

PUBLIC _main

EXTRN _free:NEAR

EXTRN _malloc:NEAR

EXTRN _printf:NEAR

; Function compile flags: /Ods

_TEXT SEGMENT

_j$ = -8

_i$ = -4

_argc$ = 8

_argv$ = 12

_main PROC NEAR

; File g:\t.c

; Line 8 // Construct the activation record

 push ebp

 mov ebp, esp

 push ecx ; Allocates storge for

 push ecx ; _i and _j.

Var iab le s in a High -Leve l Language 209

; Line 14

; Call malloc and store the returned

; pointer value into the _i variable:

 push 4

 call _malloc

 pop ecx

 mov DWORD PTR _i$[ebp], eax

; Line 15

; Call malloc and store the returned

; pointer value into the _j variable:

 push 4

 call _malloc

 pop ecx

 mov DWORD PTR _j$[ebp], eax

; Line 16

; Store 1 into the dynamic variable pointed

; at by _i. Note that this requires two

; instructions.

 mov eax, DWORD PTR _i$[ebp]

 mov DWORD PTR [eax], 1

; Line 17

; Store 2 into the dynamic variable pointed

; at by _j. This also requires two instructions.

 mov eax, DWORD PTR _j$[ebp]

 mov DWORD PTR [eax], 2

; Line 18

; Call printf to print the dynamic variables'

; values:

 mov eax, DWORD PTR _j$[ebp]

 push DWORD PTR [eax]

 mov eax, DWORD PTR _i$[ebp]

 push DWORD PTR [eax]

 push OFFSET FLAT:$SG1139

 call _printf

 add esp, 12

; Free the two variables

;

; Line 19

 push DWORD PTR _i$[ebp]

 call _free

 pop ecx

; Line 20

 push DWORD PTR _j$[ebp]

 call _free

210 Chap te r 8

 pop ecx

; Line 21

; Return a function result of zero:

 xor eax, eax

; Line 22

; Deallocate the activation record and

; return from main.

 leave

 ret 0

_main ENDP

_TEXT ENDS

END

As you can see, a lot of extra work is needed to access dynamically
allocated variables via a pointer.

8.4 Common Primitive Data Types
Computer data always has a data type attribute that describes how the pro-
gram interprets that data. The data type also determines the size (in bytes) of
the data in memory. Data types can be divided into two classes: those that the
CPU can hold in a CPU register and operate upon directly and those that are
composed of the following smaller data types. I’ll use the term primitive data
type to describe atomic objects upon which the CPU may operate directly,
and I’ll use the term composite data types to describe those aggregate objects
made up of smaller, primitive data types. In the following sections we’ll
review (from Volume 1) the primitive data types found on most modern
CPUs, and in the next chapter I’ll begin discussing composite data types.

8.4.1 Integer Variables
Most programming languages provide some mechanism for storing integer
values in memory variables. In general, a programming language uses either
unsigned binary representation, two’s-complement representation, or binary-
coded decimal representation (or a combination of these) to represent
integer values.

Perhaps the most fundamental property of an integer variable in a pro-
gramming language is the number of bits allocated to represent that integer
value. In most modern programming languages, the number of bits used to
represent an integer value is usually 8, 16, 32, 64, or some other power of 2.
Many languages only provide a single size for representing integers, but some
languages let you select from one of several different sizes. You choose the
size based on the range of values you want to represent, the amount of mem-
ory you want the variable to consume, and the performance of arithmetic
operations involving that value. Table 8-1 lists some common sizes and
ranges for various signed, unsigned, and decimal integer variables.

Var iab le s in a High -Leve l Language 211

Not all languages will support all of these different sizes (indeed, to
support all of these different sizes in the same program, you would probably
have to use assembly language). As noted earlier, some languages provide
only a single size, which is usually the processor’s native integer size (that is,
the size of a CPU general-purpose integer register).

Languages that do provide multiple integer sizes often don’t give you an
explicit choice of sizes from which to choose. For example, the C program-
ming language provides up to four different integer sizes: char (which is
always 1 byte), short, int, and long. With the exception of the char type, C
does not specify the sizes of these integer types other than to state that short
integers are less than or equal to int objects in size, and int objects are less
than or equal to long integers in size. (In fact, all three could be the same
size.) C programs that depend on integers being a certain size may fail when
compiled with different compilers that don’t use the same sizes as the first
compiler.

While it may seem inconvenient that various programming languages
avoid providing an exact specification of the size of an integer variable in the
language definition, keep in mind that this ambiguity is intentional. When
one declares an “integer” variable in a given programming language, the
language leaves it up to the compiler’s implementer to choose the best size
for that integer, based on performance and other considerations. The
definition of “best” may change based on the CPU for which the compiler
generates code. For example, a compiler for a 16-bit processor may choose to
implement 16-bit integers because the CPU processes them most efficiently.
A compiler for a 32-bit processor, however, may choose to implement 32-bit
integers (for the same reason). Languages that specify the exact size of various

Table 8-1: Common Integer Sizes and Their Ranges

Size, in Bits Representation Unsigned Range

8 Unsigned 0..255

Signed 128..+127

Decimal 0..99

16 Unsigned 0..65,535

Signed 32768..+32,767

Decimal 0..9999

32 Unsigned 0..4,294,967,295

Signed 2,147,483,648..+2,147,483,647

Decimal 0..99999999

64 Unsigned 0..18,446,744,073,709,551,615

Signed 9,223,372,036,854,775,808..+9,223,372,036,854,775,807

Decimal 0..9999999999999999

128 Unsigned 0..340,282,366,920,938,463,463,374,607,431,768,211,455

Signed 170,141,183,460,469,231,731,687,303,715,884,105,728 ..
+170,141,183,460,469,231,731,687,303,715,884,105,727

Decimal 0..99,999,999,999,999,999,999,999,999,999,999

212 Chap te r 8

integer formats (such as Java) can suffer as processor technology marches
along and it becomes more efficient to process larger data objects. For exam-
ple, when the world switched from 16-bit processors to 32-bit processors in
general-purpose computer systems, it was actually faster to do 32-bit arith-
metic on most of the newer processors. Therefore, compiler writers redefined
“integer” to mean “32-bit integer” in order to maximize the performance of
programs employing integer arithmetic.

Some programming languages provide support for unsigned integer
variables as well as signed integers. At first glance, it might seem that the
whole purpose behind supporting unsigned integers is to provide twice the
number of positive values when negative values aren’t required. In fact, there
are many other reasons why great programmers might choose unsigned over
signed integers when writing efficient code.

On some CPUs, unsigned integer multiplication and division are faster
than their signed counterparts. Comparing values within the range 0..n can
be done more efficiently using unsigned integers rather than signed integer
(requiring only a single comparison against n in the unsigned case); this is
especially important when checking bounds of array indices when the array’s
element indexes begin at zero.

Many programming languages will allow you to include variables of
different sizes within the same arithmetic expression. The compiler will
automatically sign-extend or zero-extend operands to the larger size within
an expression as needed to compute the final result. The problem with this
automatic conversion is that it hides the fact that extra work is required when
processing the expression, and the expressions themselves don’t explicitly
show this. An assignment statement such as

x = y + z - t;

could be a short sequence of machine instructions if the operands are all the
same size, or it could require some additional instructions if the operands have
different sizes. For example, consider the following C code:

#include <stdio.h>

static char c;

static short s;

static long l;

static long a;

static long b;

static long d;

int main(int argc, char **argv)

{

 l = l + s + c;

 printf("%ld %ld %ld", l, s, c);

 a = a + b + d;

Var iab le s in a High -Leve l Language 213

 printf("%ld %ld %ld", a, b, d);

 return 0;

}

Compiled with the Borland C++ compiler, you get the following two
assembly language sequences for the two assignment statements:

; l = l + s + c;

;

@1:

 movsx eax,word ptr [_s]

 add eax,dword ptr [_l]

 movsx edx,byte ptr [_c]

 add eax,edx

 mov dword ptr [_l],eax

; a = a + b + d;

;

 mov edx,dword ptr [_a]

 add edx,dword ptr [_b]

 add edx,dword ptr [_d]

 mov dword ptr [_a],edx

As you can see, the statement that operates on variables whose sizes are
all the same uses fewer instructions than the one that mixes operand sizes in
the expression.

Another thing to note, when using different-sized integers in an
expression, is that not all CPUs support all operand sizes as efficiently.
While it should be fairly obvious that using an integer size that is larger
than the CPU’s general-purpose integer registers will produce inefficient
code, it might not be quite as obvious that using smaller integer values can
be inefficient as well. Many RISC CPUs only work on operands that are
exactly the same size as the general-purpose registers. Smaller operands
must first be zero-extended or sign-extended to the size of a general-
purpose register prior to any calculations involving those values. Even
on CISC processors, such as the 80x86, that have hardware support for
different sizes of integers, using certain sizes can be more expensive. For
example, under 32-bit operating systems, instructions that manipulate 16-
bit operands require an extra opcode prefix byte and are, therefore, larger
than instructions that operate on 8-bit or 32-bit operands.

8.4.2 Floating-Point/Real Variables
Like integers, many HLLs provide multiple floating-point variable sizes.
Most languages provide at least two different sizes, a 32-bit single-precision
floating-point format and a 64-bit double-precision floating-point format,
based on the IEEE 754 floating-point standard. A few languages provide
80-bit floating-point variables, based on Intel’s 80-bit extended-precision
floating-point format, but such usage is becoming rare.

214 Chap te r 8

Different floating-point formats trade off space and performance for
precision. Calculations involving smaller floating-point formats are usually
quicker than calculations involving the larger formats. However, you give up
precision to achieve improved performance and size savings (see Write Great
Code, Volume 1, Chapter 4 for details).

As with expressions involving integer arithmetic, you should avoid
mixing different-sized floating-point operands in an expression. The CPU
(or FPU) must convert all floating-point values to the same format before
using them. This can involve additional instructions (consuming more
memory) and additional time. Therefore, you should try to use the same
floating-point types throughout an expression, wherever possible.

Conversion between integer and floating-point formats is another
expensive operation you should avoid. Modern HLLs attempt to keep vari-
ables’ values in registers as much as possible. Unfortunately, on most modern
CPUs it is impossible to move data between the integer and floating-point
registers without first copying that data to memory (which is expensive,
because memory access is slow compared with register access). Furthermore,
conversion between integer and floating-point numbers often involves several
specialized instructions. All of this consumes time and memory. Whenever
possible, avoid these conversions.

8.4.3 Character Variables
Standard character data in most modern HLLs consumes one byte per
character. On CPUs that support byte addressing, such as the Intel 80x86
processor, a compiler can reserve a single byte of storage for each character
variable and efficiently access that character variable in memory. Some RISC
CPUs, however, cannot access data in memory except in 32-bit chunks (or
some other size other than 8 bits).

For CPUs that cannot address individual bytes in memory, HLL compilers
usually reserve 32 bits for a character variable and only use the LO byte of
that double-word variable for the character data. Because few programs have
a large number of scalar character variables,4 the amount of space wasted is
hardly an issue in most systems. However, if you have an unpacked array of
characters, the wasted space can become significant. I’ll return to this issue
in Chapter 9.

Modern programming languages support the Unicode character set.
Unicode characters require 2 bytes of memory to hold the character’s data
value. On CPUs that support byte or word addressing, HLL compilers gen-
erally reserve only 2 bytes for a Unicode character variable. On CPUs that
cannot efficiently access objects smaller than 32 bits, HLL compilers usually
reserve 32 bits and use only the LO 16 bits for the Unicode character data.

Lately, because 16 bits cannot encode a sufficient number of characters
to represent all the world’s different alphabets and symbol sets, applications
have begun using multibyte character sets such as UTF-8. These encode
individual characters using a variable-length string of 1 to 5 characters (see
Chapter 10).

4 Scalar, in this context, means “not an array of characters.”

Var iab le s in a High -Leve l Language 215

8.4.4 Boolean Variables
A Boolean variable requires only a single bit to represent the two values True
or False. HLLs will usually reserve the smallest amount of memory possible
for such variables (a byte on machines that support byte addressing, and a
larger amount of memory on those CPUs that can only address words or
double words).

Although most HLL compilers usually reserve the smallest amount of
addressable memory possible for a Boolean variable, this isn’t always the
case. Some languages (like FORTRAN) allow you to create multibyte
Boolean variables (for example, the FORTRAN LOGICAL*4 data type).

Some languages (C for example) don’t support an explicit Boolean data
type. They use an integer data type to represent Boolean values. In such
languages, you get to choose the size of your Boolean variables by choosing
the size of the integer you use to hold the Boolean value. For example, in a
typical 32-bit implementation of the C/C++ languages, you can define 1-byte,
2-byte, or 4-byte Boolean values as shown here:5

Some languages, under certain circumstances, will use only a single bit of
storage for a Boolean variable when that variable is a field of a record or an
element of an array. I’ll return to this discussion in Chapter 9 when consider-
ing composite data structures.

8.5 Variable Addresses and High-level Languages

The organization, class, and type of variables in your programs can affect the
efficiency of the code that a compiler produces. Additionally, issues like the
order of declaration, the size of the object, and the placement of the object
in memory can have a big impact on the running time of your programs. In
this section, I’ll describe how you can organize your variable declarations to
produce efficient code.

As for immediate constants encoded in machine instructions, many
CPUs provide specialized addressing modes that access memory more effi-
ciently than other, more general, addressing modes. Just as you can reduce
the size and improve the speed of your programs by carefully selecting the
constants you use, you can make your programs more efficient by carefully
choosing how you declare variables. But whereas with constants you are
primarily concerned with their values, with variables you must consider the
address in memory where the compiler places those variables.

C Integer Data Type Size of Boolean Object

char 1 byte

short int 2 bytes

long int 4 bytes

5 Assuming, of course, that your C/C++ compiler uses 16-bit integers for short integers and 32-
bit integers for long integers.

216 Chap te r 8

The 80x86 is a typical example of a CISC processor that provides
multiple address sizes. When running on a modern 32-bit operating system
like Linux or Windows, the 80x86 CPU supports three address sizes: 0-bit,
8-bit, and 32-bit. The 80x86 uses 0-bit displacements for register-indirect
addressing modes. I’ll ignore the 0-bit displacement addressing for the time
being because 80x86 compilers generally don’t use this particular addressing
mode to access variables you explicitly declare in your code. The 8-bit and
32-bit displacement addressing modes are the more interesting ones for the
current discussion.

8.5.1 Storage Allocation for Global and Static Variables
The 32-bit displacement is, perhaps, the easiest to understand. Variables
you declare in your program, which the compiler allocates in memory rather
than in a register, have to appear somewhere in memory. On most 32-bit
processors, the address bus is 32 bits wide, so it takes a 32-bit address to
access a variable at an arbitrary location in memory. An instruction that
encodes this 32-bit address as part of the instruction can access any memory
variable. The 80x86 provides the displacement-only addressing mode whose
effective address is exactly the 32-bit constant embedded in the instruction.

A problem with 32-bit addresses (one that gets even worse as we move to
64-bit processors with a 64-bit address) is that the address winds up consuming
the largest portion of the instruction’s encoding. Certain forms of the dis-
placement-only addressing mode on the 80x86, for example, have a 1-byte
opcode and a 4-byte address. Therefore, 80 percent of the instruction’s size is
consumed by the address. On typical RISC processors, the situation is even
worse. Because the instructions are uniformly 32 bits long on a typical RISC
CPU, you cannot encode a 32-bit address as part of the instruction. In order
to access a variable at an arbitrary 32-bit address in memory, you need to load
the 32-bit address of that variable into a register and then use the register
indirect addressing mode to access the memory variable. This could require
three 32-bit instructions as Figure 8-2 demonstrates; that’s expensive in terms
of both speed and space.

Figure 8-2: RISC CPU access of an absolute address

32-bit address
32-bit-wide
instructions

1.

2.

3.
1. Load immediate constant
 into the HO word of a
 register.
2. Load immediate constant
 into the LO word of a
 register.

3. Load memory value indirect
 from register loaded in (1,2).

Var iab le s in a High -Leve l Language 217

Because RISC CPUs don’t run horribly slower than CISC processors, it
should be obvious that compilers rarely generate code this bad. In reality,
programs running on RISC CPUs often keep base addresses to blocks of
objects in registers, so they can efficiently access variables in those blocks
using short offsets from the base register. But how do compilers deal with
arbitrary addresses in memory?

8.5.2 Using Automatic Variables to Reduce Offset Sizes
One way to avoid large instruction sizes with large displacements is to use
an addressing mode with a smaller displacement. The 80x86, for example,
provides an 8-bit displacement form for the base-plus-indexed addressing
mode. This form allows you to access data at an offset of –128 through +127
bytes around a base address contained in a 32-bit register. RISC processors
have similar features, although the number of displacement bits is usually
larger (16 bits), allowing a greater range of addresses.

By pointing a 32-bit register at some base address in memory and placing
your variables near that base address, you can use the shorter forms of these
instructions so your program will be smaller and will run more quickly. Obvi-
ously, this isn’t too difficult if you’re working in assembly language and you
have direct access to the CPU’s registers. However, if you’re working in an
HLL, you may not have direct access to the CPU’s registers and even if you
did, you probably couldn’t convince the compiler to allocate your variables at
convenient addresses. How do you take advantage of this small-displacement
addressing mode in your HLL programs? The answer is that you don’t
explicitly specify the use of this addressing mode, the compiler does it for
you automatically.

Consider the following trivial function in Pascal:

function trivial(i:integer; j:integer):integer;

var

k:integer;

begin

k := i + j;

trivial := k;

end;

Upon entry into this function, the compiled code constructs an activation
record (sometimes called a stack frame). An activation record is a data structure
in memory where the system keeps the local data associated with a function
or procedure. The activation record includes parameter data, automatic
variables, the return address, temporary variables that the compiler allocates,
and machine-state information (for example, saved register values). The
runtime system allocates storage for an activation record on the fly and, in
fact, two different calls to the procedure or function may place the activation
record at different addresses in memory. In order to access the data in an
activation record, most HLLs point a register (usually called the frame pointer)
at the activation record, and then the procedure or function references

218 Chap te r 8

automatic variables and parameters at some offset from this frame pointer.
Unless you have many automatic variables and parameters or your local
variables6 and parameters are quite large, these variables generally appear in
memory at an offset that is near the base address. This means that the CPU
can use a small offset when referencing variables near the base address held
in the frame pointer. In the Pascal example given earlier, parameters i and j
and the local variable k would most likely be within a few bytes of the frame
pointer’s address, so the compiler can encode these instructions using a small
displacement rather than a large displacement. If your compiler allocates
local variables and parameters in an activation record, all you have to do is
arrange your variables in the activation record so that they appear near the
base address of the activation record. But how do you do that?

Construction of an activation record begins in the code that calls a
procedure. The caller places the parameter data (if any) in the activation
record. Then the execution of an assembly language call instruction adds
the return address to the activation record. At this point, construction of the
activation record continues within the procedure itself. The procedure copies
the register values and other important state information and then makes
room in the activation record for local variables. The procedure must also
update the frame-pointer register (e.g., EBP on the 80x86) so that it points at
the base address of the activation record.

To see what a typical activation record looks like, consider the following
HLA procedure declaration:

procedure ARDemo(i:uns32; j:int32; k:dword); @nodisplay;

var

a:int32;

r:real32;

c:char;

b:boolean;

w:word;

begin ARDemo;

.

.

.

end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it builds the
activation record by pushing the data for the parameters onto the stack.
The calling code for this procedure will push the parameters onto the stack
in the order they appear in the parameter list, from left to right. Therefore,
the calling code first pushes the value for the i parameter, then pushes the
value for the j parameter, and finally pushes the data for the k parameter.
After pushing the parameters, the program calls the ARDemo procedure.
Immediately upon entry into the ARDemo procedure, the stack contains these
four items arranged as shown in Figure 8-3, assuming the stack grows from
high memory addresses to low memory addresses (as it does on most
processors).

6 Remember, in Pascal local variables are always automatic variables, so this discussion will use
the two terms interchangeably.

Var iab le s in a High -Leve l Language 219

Figure 8-3: Stack organization immediately
upon entry into ARDemo

The first few instructions in ARDemo will push the current value of the
frame-pointer register (e.g., EBP on the 80x86) onto the stack and then copy
the value of stack pointer (ESP on the 80x86) into the frame-pointer register.
Next, the code drops the stack pointer down in memory to make room for
the local variables. This produces the stack organization shown in Figure 8-4
on the 80x86 CPU.

To access objects in the activation record you must use offsets from the
frame-pointer register (EBP in Figure 8-4) to the desired object.

Figure 8-4: Activation record for ARDemo

The two items of immediate interest are the parameters and the
local variables. You can access the parameters at positive offsets from the
frame-pointer register; you can access the local variables at negative offsets
from the frame-pointer register, as Figure 8-5 shows.

Previous
stack

contents

Stack pointerReturn address

k‘s value

j‘s value

i‘s value

Previous
stack

contents

ESP

i‘s value

j‘s value

k‘s value

Return address

Old EBP value EBP

a

r
c
b
w

220 Chap te r 8

Figure 8-5: Offsets of objects in the ARDemo
activation record on the 80x86

Intel specifically reserves the EBP (extended base pointer) to point at
the base of the activation record. Therefore, compilers will typically use this
register as the frame-pointer register when allocating activation records on
the stack. Some compilers attempt to use the 80x86 ESP (stack pointer)
register as the pointer to the activation record because this reduces the
number of instructions in the program. Whether the compiler uses EBP,
ESP, or some other register, the bottom line is that the compiler typically
points some register at the activation record, and most of the local variables
and parameters are near the base address of the activation record. That is the
important issue for the discussion that follows.

As you can see in Figure 8-5, all the local variables and parameters in the
ARDemo procedure are within 127 bytes of the frame-pointer register (EBP).
This means that on the 80x86 CPU, an instruction that references one of
these variables or parameters will be able to encode the offset from EBP
using a single byte. Because of the way the program builds the activation
record, parameters will appear at positive offsets from the frame-pointer
register, and local variables will appear at negative offsets from the frame-
pointer register.

For procedures that have only a few parameters and local variables, the
CPU will be able to access all parameters and local variables using a small
offset (that is, 8 bits on the 80x86, 16 bits on various RISC processors).
Consider, however, the following C/C++ function:

int BigLocals(int i, int j);

{

int array[256];

int k;

.

.

.

}

Previous
stack

contents

i‘s value

j‘s value

k‘s value

Return address

Old EBP value EBP

a

r
c
b
w

+0

--4

--8
--9
--10
--12

+4

+8

+12

+16

Offset from EBP

Var iab le s in a High -Leve l Language 221

The activation record for this function appears in Figure 8-6. One
difference you’ll notice between this activation record and the ones for the
Pascal and HLA functions is that C pushes its parameters on the stack in the
reverse order (that is, it pushes the last parameter first, and it pushes the first
parameter last). This difference, however, does not impact our discussion.

Figure 8-6: Activation record for BigLocals function

The important thing to note in Figure 8-6 is that the local variables
array and k have large negative offsets. With offsets of –1,024 and –1,028
(assuming an integer is 32 bits), the displacements from EBP to array and
k are well outside the range that the compiler can encode into a single
byte on the 80x86. Therefore, the compiler will have no choice but to
encode these displacements using a 32-bit value. Of course, this will make
accessing these local variables in the function quite a bit more expensive.

Nothing can be done about the array variable in this example (no matter
where you put it, the offset to the base address of the array will be at least
1,024 bytes from the activation record’s base address). However, consider the
activation record appearing in Figure 8-7.

Figure 8-7: Another possible activation record
layout for the BigLocals function

Previous
stack

contents

i‘s value

j‘s value

Return address

Old EBP value EBP

array

k

+0

--1,024
--1,028

+4

+8

+12

Offset from EBP

Previous
stack

contents

i‘s value

j‘s value

Return address

Old EBP value EBP

array --1,028

k
+0

--4

+4

+8

+12

Offset from EBP

222 Chap te r 8

In this figure, the compiler has rearranged the local variables in the
activation record. Although it will still take a 32-bit displacement to access
the array variable, accessing k now uses an 8-bit displacement (on the 80x86)
because k’s offset is –4. You can produce these offsets with the following code:

int BigLocals(int i, int j);

{

 int k;

 int array[256];

 .

 .

 .

}

In theory, this isn’t a terribly difficult optimization for a compiler to do
(rearranging the order of the variables in the activation record), so you’d
expect the compiler to make this modification for you so that it can access as
many local variables as possible using small displacements. In practice, not all
compilers actually do this optimization for various technical and practical
reasons (specifically, it can break some poorly written code that makes
assumptions about the placement of variables in the activation record).

If you want to ensure that the maximum number of local variables in
your procedure have the smallest possible displacements, the solution is
trivial: declare all your 1-byte variables first, your 2-byte variables second,
your 4-byte variables next, and so on up to the largest local variable in your
function. Generally, though, you’re probably more interested in reducing
the size of the maximum number of instructions in your function rather than
reducing the size of the offsets required by the maximum number of vari-
ables in your function. For example, if you have 128 1-byte variables and you
declare these variables first, you’ll only need a single byte displacement if
you access them. However, if you never access these variables, the fact that
they have a 1-byte displacement rather than a 4-byte displacement saves you
nothing. The only time you save any space is when you actually access that
variable’s value in memory via some machine instruction that is using a 1-byte
displacement rather than a 4-byte displacement. Therefore, to reduce your
function’s object code size, you want to maximize the number of instructions
that use a small displacement. If you refer to a 100-byte array far more often
than any other variable in your function, you’re probably better off declaring
that array first, even if it only leaves 28 bytes of storage (on the 80x86) for
other variables that will use the shorter displacement.

RISC processors typically use a 16-bit offset to access fields of the activa-
tion record. Therefore, you have more latitude with your declarations when
using a RISC chip (which is good, because when you do exceed the 16-bit
limitation, accessing a local variable gets really expensive). Unless you’re declar-
ing one or more arrays that consume more than 32,768 bytes (combined),
the typical compiler for a RISC chip is going to generate decent code.

This same argument applies to parameters as well as local variables.
However, it’s rare to find code passing a large data structure (by value) to a
function because of the expense involved.

Var iab le s in a High -Leve l Language 223

8.5.3 Storage Allocation for Intermediate Variables
Intermediate variables are those that are local to one procedure/function
but global to another. You’ll find intermediate variables in block-structured
languages like Pascal/Delphi/Kylix, Ada, Modula-2, and HLA that support
nested procedures. Consider the following example program in Pascal:

program nestedProcedures;

var

 globalVariable: integer;

 procedure procOne;

 var

 intermediateVariable: integer;

 procedure procTwo;

 var

 localVariable:integer;

 begin

 localVariable := intermediateVariable +

 globalVariable;

 .

 .

 .

 end; (* procTwo *)

 begin (* procOne *)

 .

 .

 .

 end; (* procOne *)

begin (* main program *)

 .

 .

 .

end. (* main program*)

As you can see in this code fragment, nested procedures can access vari-
ables found in the main program (that is, global variables) as well as variables
found in procedures containing the nested procedure (that is, the interme-
diate variables). As you’ve seen, local variable access is inexpensive compared
to global variable access (because you always have to use a larger offset to
access global objects within a procedure). Intermediate variable access, as is
done in the procTwo procedure, is expensive. The difference between local
and global variable accesses is the size of the offset/displacement coded into
the instruction—with local variables typically using a shorter offset than is
possible for global objects. Intermediate accesses, on the other hand, typically
require several machine instructions. This makes the instruction sequence
that accesses an intermediate variable several times slower and several times
larger than accessing a local (or even global) variable.

224 Chap te r 8

The problem with using intermediate variables is that the compiler must
maintain either a linked list of activation records or a table of pointers to the
activation records (this table is called the display) in order to reference inter-
mediate objects. To access an intermediate variable, the procTwo procedure
must either follow a chain of links (there would be only one link in this
example) or it would have to do a table lookup in order to get a pointer to
procOne’s activation record. Worse still, maintaining the display of this linked
list of pointers isn’t exactly cheap. The work needed to maintain these objects
has to be done on every procedure/function entry and exit, even when the
procedure or function doesn’t access any intermediate variables on a partic-
ular call. Although there are, arguably, some software engineering benefits
to using intermediate variables (having to do with information hiding)
versus a global variable, keep in mind that access to intermediate objects
is expensive.

8.5.4 Storage Allocation for Dynamic Variables and Pointers
Pointer access in an HLL provides another opportunity for optimization in
your code. Pointers can be expensive to use but, under certain circumstances,
they can actually make your programs more efficient by reducing displace-
ment sizes.

A pointer is simply a memory variable whose value is the address of
some other memory object (therefore, pointers are the same size as an
address on the machine). Because most modern CPUs only support
indirection via a machine register, indirectly accessing an object is typically a
two-step process: First the code has to load the value of the pointer variable
into a register and then the program has to refer (indirectly) to the object
through that register.

Consider the following C/C++ code fragment and the corresponding
HLA assembly code:

 int *pi;

 .

 .

 .

 i = *pi; // Assume pi is initialized with a

 // reasonable address at this point.

And here is the corresponding 80x86/HLA assembly code:

 pi: pointer to int32;

 .

 .

 .

 mov(pi, ebx); // Again, assume pi has

 mov([ebx], eax); // been properly initialized

 mov(eax, i);

Var iab le s in a High -Leve l Language 225

Had pi been a regular variable rather than pointer object, this code
could have dispensed with the mov([ebx], eax); instruction. Therefore, the
use of this pointer variable has both increased the size of the program and
reduced the execution speed by inserting an extra instruction into the code
sequence that the compiler generates.

Note that if you indirectly refer to an object several times in close
succession, then the compiler may be able to reuse the pointer value it has
loaded into the register, thus amortizing the cost of the extra instruction
across several different instructions. Consider the following C/C++ code
sequence and the corresponding HLA code. Here is the C/C++ source code:

 int *pi;

 .

 . // Assume code in this area

 . // initializes pi appropriately.

 .

 *pi = i;

 *pi = *pi + 2;

 *pi = *pi + *pi;

 printf("pi = %d\n", *pi);

Here’s the corresponding 80x86/HLA code:

 pi: pointer to int32;

 .

 . // Assume code in this area

 . // initializes pi appropriately.

 .

 // Extra instruction that we need to initialize EBX

 mov(pi, ebx);

 mov(i, eax);

 mov(eax, [ebx]); // This code can clearly be optimized;

 mov([ebx], eax); // we'll ignore that fact for the

 add(2, eax); // sake of the discussion here.

 mov(eax, [ebx]);

 mov([ebx], eax);

 add([ebx], eax);

 mov(eax [ebx]);

 stdout.put("pi = ", (type int32 [ebx]), nl);

Note that this code loads the actual pointer value into EBX only once.
From that point forward the code will simply use the pointer value contained
in EBX to reference the object at which pi is pointing. Of course, any com-
piler that can do this optimization can probably eliminate five redundant
memory loads and stores from this assembly language sequence, but I’ll
assume that they aren’t redundant for the time being. The first thing about
this code you should note is that it didn’t have to reload EBX with the value

226 Chap te r 8

of pi every time it wanted to access the object at which pi points. Therefore,
we only have one instruction of overhead (mov(pi, ebx);) amortized across
six of these instructions. That’s not too bad at all.

Indeed, a good argument could be made that this code is more optimal
than accessing a local or global variable directly. An instruction of the form

mov([ebx], eax);

uses a 0-bit displacement encoded into the instruction. Therefore, this move
instruction is only 2 bytes long rather than 3, 5, or even 6 bytes long. If pi is a
local variable, then it’s quite possible that the original instruction that copies
pi into EBX is only 3 bytes long (a 2-byte opcode and a 1-byte displacement).
Because instructions of the form mov([ebx], eax); are only 2 bytes long,
it only takes three instructions to “break even” on the byte count using indirec-
tion rather than an 8-bit displacement. After the third instruction that
references whatever pi points at, the code involving the pointer is actually
shorter.

You can even use indirection to provide efficient access to a block of
global variables. As noted earlier, the compiler generally cannot determine
the address of a global object while it is compiling your program. Therefore,
it has to assume the worst case and allow for the largest possible displacement/
offset when generating machine code to access a global variable. Of course,
you’ve just seen that you can reduce the size of the displacement value from
32 bits down to 0 bits by using a pointer to the object rather than accessing
the object directly. Therefore, you could take the address of the global object
(with the C/C++ & operator, for example) and then use indirection to access
the variable. The problem with this approach is that it requires a register
(a precious commodity on any processor, but especially on the 80x86 that has
only six general-purpose registers to utilize). If you access the same variable
many times in rapid succession, then this 0-bit displacement trick can make
your code more efficient. However, it’s somewhat rare to access the same
variable a large number of times in a short sequence of code without also
needing to access several other variables. Therefore, the compiler may have
to flush the pointer from the register and reload the pointer value later
(thereby reducing the efficiency of this approach). If you’re working on a
RISC chip with many registers, you can probably employ this trick to your
advantage. On a processor with a limited number of registers, you won’t be
able to employ this trick as often.

8.5.5 Using Records/Structures to Reduce Instruction Offset Sizes
There is a trick that you can use to gain access to several variables with a single
pointer: put all those variables into a structure, and then use the address of
the structure. By accessing the fields of the structure via the pointer, you can
get away with using smaller instructions to access the objects. This works
almost exactly as you’ve seen for activation records (indeed, activation
records are, literally, records that the program references indirectly via the
frame-pointer register). About the only difference between accessing objects

Var iab le s in a High -Leve l Language 227

indirectly in a user-defined record/structure and accessing objects in the
activation record is that most compilers won’t let you refer to fields in a user
structure/record using negative offsets. Therefore, you’re limited to about
half the number of bytes that are normally accessible in an activation record.
For example, on the 80x86 you can access the object at offset zero from a
pointer using a 0-bit displacement and objects at offsets 1..+127 using a single
byte displacement. Consider the following C/C++ example that uses this trick:

typedef struct vars

{

 int i;

 int j;

 char *s;

 char name[20];

 short t;

};

static vars v;

vars *pv = &v; // Initialize pv with the address of v.

 .

 .

 .

 pv->i = 0;

 pv->j = 5;

 pv->s = &pv->name;

 pv->t = 0;

 strcpy(pv->name, "Write Great Code!");

 .

 .

 .

A well-designed compiler will load the value of pv into a register exactly
once for this code fragment. Because all the fields of the vars structure are
within 127 bytes of the base address of the structure in memory, an 80x86
compiler can emit a sequence of instructions that require only 1-byte offsets,
even though the v variable itself is a static/global object. Note, by the way,
that the first field in the vars structure is special. Because this is at offset zero
in the structure, this allows the use of a 0-bit displacement when accessing
this field. Therefore, it’s a good idea to put your most-often-referenced field
first in a structure if you’re going to refer to that structure indirectly.

Using indirection in your code does come at a cost. On a limited-register
CPU such as the 80x86, using this trick will tie up a register for some period
and that may, effectively cause the compiler to generate worse code. If the
compiler must constantly reload the register with the address of the structure
in memory, you can watch the savings that this trick buys you evaporate rather
quickly. When using this trick, you should look at the assembly code the com-
piler generates and verify that you’re actually saving something. Tricks such
as using pointers to structures vary in effectiveness across different processors
(and different compilers for the same processor). Therefore, it’s a really good
idea to look at the code generated by your compiler when using a trick such
as this in order to make sure that your trick is actually saving you something
rather than costing you something.

228 Chap te r 8

8.5.6 Register Variables
While on the subject of registers, it’s worthwhile to point out one other 0-bit
displacement way to access variables in your programs. You can also access
your variables by keeping them in machine registers. Machine registers are
always the most efficient place to keep variables and parameters. Unfortu-
nately, only in assembly language and, to a limited extent, C/C++, do you
have any control over whether the compiler should keep a variable or para-
meter in a register. In some respects, this is not bad. Good compilers do a
much better job of register allocation than the casual programmer does.
However, an expert programmer can do a better job of register allocation
than a compiler because the expert programmer understands the data the
program will be processing and the frequency of access to a particular mem-
ory location. (And of course, the expert programmer can first look at what
the compiler is doing, whereas the compiler doesn’t have the benefit of first
looking at what the expert programmer has done.)

Some languages, such as Delphi and Kylix, provide limited support for
programmer-directed register allocation. In particular, the Delphi/Kylix
compilers provide a compiler option that you can use to tell the compiler to
pass the first three (ordinal) parameters for a function or procedure in the
EAX, EDX, and ECX registers. This is known as the fastcall calling convention
and several C/C++ compilers support it as well (e.g., Borland’s C++ and
C++Builder compilers).

In Delphi/Kylix and certain other languages, control of the fastcall
parameter passing convention is the only control you get. The C/C++
language, however, provides the register keyword, a storage specifier (much
like the const, static, and auto keywords) that tells the compiler that the
programmer expects to use the variable frequently and the compiler should
attempt to keep the variable in a register. Note that the compiler can choose
to ignore the register keyword (in which case the compiler reserves variable
storage using automatic allocation). Many compilers ignore the register
keyword altogether because the compiler’s authors feel that they can do a
better job of register allocation than any programmer (a somewhat arrogant
assumption). Of course, on some register-starved machines such as the 80x86,
there are so few registers to work with that it might not even be possible to
allocate a variable to a register throughout the execution of some function.
Nevertheless, some compilers do respect the programmer’s wishes and will
allocate a few variables in registers if you request that they do so.

Most RISC compilers reserve several registers for passing parameters and
several registers for local variables. Therefore, it’s a good idea (if possible) to
place the parameters you access most frequently first in the parameter declara-
tion because they’re probably the ones that the compiler would allocate in a
register.7 The same is true for local variable declarations. Always declare
frequently used local variables first because many compilers may allocate
those (ordinal) variables in registers.

7 Many optimizing compilers are smart enough to choose which variables they keep in registers
based on how the program uses those variables.

Var iab le s in a High -Leve l Language 229

One problem with compiler register allocation is that it is static. That is,
the compiler determines which variables to place in registers based on an
analysis of your source code during compilation, not during runtime. Com-
pilers often make assumptions (that are usually correct) like “this function
references variable xyz far more often than any other variable, so it’s a good
candidate for a register variable.” Indeed, by placing the variable in a register,
the compiler will certainly reduce the size of the program. However, it could
also be the case that all those references to xyz sit in code that rarely, if ever,
executes. Although the compiler might save some space (by emitting
smaller instructions to access registers rather than memory), the code won’t
run appreciably faster. After all, if the code rarely or never executes, then
making that code run faster does not contribute much to the execution time
of the program. On the other hand, it’s also quite possible to bury a single
reference to some variable in a deeply nested loop that executes many times.
With only one reference in the entire function, the compiler’s optimizer may
overlook the fact that the executing program references the variable fre-
quently. Although compilers have gotten smarter about handling variables
inside loops, the fact is that no compiler can predict how many times an
arbitrary loop will execute at runtime. Human beings are much better at
predicting this sort of behavior (or, at least, measuring it with a profiler);
therefore, humans are the best ones to make better decisions concerning
variable allocation in registers.

8.6 Variable Alignment in Memory
On many processors (particularly RISC), there is another efficiency concern
you must take into consideration. Many modern processors will not let you
access data at an arbitrary address in memory. Instead, all accesses must take
place on some native boundary (usually 4 bytes) that the CPU supports.
Even when a CISC processor allows memory accesses at arbitrary byte
boundaries, it’s often more efficient to access primitive objects (bytes,
words, and double words) on a boundary that is a multiple of the
object’s size (see Figure 8-8).

Figure 8-8: Variable alignment in memory

If the CPU supports unaligned accesses—that is, if the CPU allows you to
access a memory object on a boundary that is not a multiple of the object’s
primitive size—then it should be possible to pack the variables into the

Address n +
(n is divisible by 4)

0 2 3 41 5 76 8 9 10 11

Double words

Words

Bytes

On many CPUs, memory objects must
start at an address that is a multiple of
the object’s size.

230 Chap te r 8

activation record. This way, you would obtain the maximum number of
variables having a short offset. However, because unaligned accesses are
sometimes slower than aligned accesses, many optimizing compilers will
insert padding bytes into the activation record in order to ensure that all
variables are aligned on a reasonable boundary for their native size (see
Figure 8-9). This trades off slightly better performance for a slightly larger
program.

Figure 8-9: Padding bytes in an
activation record

However, if you put all your double-word declarations first, your
word declarations second, your byte declarations third, and your array/
structure declarations last, you can improve both the speed and size of
your code. The compiler will usually ensure that the first local variable you
declare appears at a reasonable boundary (typically a double-word bound-
ary). By declaring all your double-word variables first, you ensure that all
such variables appear at an address that is a multiple of 4 (because compilers
usually allocate adjacent variables in your declarations in adjacent locations
in memory). The first word-sized object you declare will also appear at an
address that is a multiple of 4, and that means its address is also a multiple
of 2 (which is best for word accesses). By declaring all your word variables
together, you ensure that each word variable appears at an address that is a
multiple of 2. On processors that allow byte access to memory, the placement
of the byte variables (with respect to efficiently accessing the byte data) is
irrelevant. By declaring all your local byte variables last in a procedure or
function, you generally ensure that such declarations do not impact the
performance of the double-word and word variables you also use in the
function. Figure 8-10 shows what a typical activation record will look like if
you declare your variables as in the following function.

char oneByte ;

short twoBytes ;

char oneByte2 ;

int fourBytes ;

Activation record produced
by a typical C compiler

oneByte

twoBytes

oneByte2

fourBytes

Offset

--1

--2

--4

--8

Padding bytes

Var iab le s in a High -Leve l Language 231

int someFunction(void)

{

 int d1; // Assume ints are 32-bit objects

 int d2;

 int d3;

 short w1; // Assume shorts are 16-bit objects

 short w2;

 char b1; // Assume chars are 8-bit objects

 char b2;

 char b3;

 .

 .

 .

} // end someFunction

Note in Figure 8-10 how all the double-word variables (d1, d2, and d3)
begin at addresses that are multiples of 4 (4, 8, and 12). Also, notice how
all the word-sized variables (w1 and w2) begin at addresses that are multiples
of 2 (14 and 16). The byte variables (b1, b2, and b3) begin at arbitrary
addresses in memory (both even and odd addresses).

Figure 8-10: Aligned variables in an activation
record

Now consider the following function that has arbitrary (unordered)
variable declarations and the corresponding activation record (appearing in
Figure 8-11):

int someFunction2(void)

{

Previous
stack

contents

Return address

Old EBP value EBP+0

--4

+4

+8

Offset from EBP

Parameters

d1

d2

d3

w1

w2

b1

b2

b3

--8

--12

--16

--17

--14

--18

--19

232 Chap te r 8

 char b1; // Assume chars are 8-bit objects

 int d1; // Assume ints are 32-bit objects

 short w1; // Assume shorts are 16-bit objects

 int d2;

 short w2;

 char b2;

 int d3;

 char b3;

 .

 .

 .

} // end someFunction2

As you can see in Figure 8-11, every variable except the byte variables
appear at an address that is inappropriate for the object. On processors that
allow memory accesses at arbitrary addresses, it may take more time to access
a variable that is not aligned on an appropriate boundary.

Figure 8-11: Unaligned variables in an activation
record

Some processors do not allow a program to access an object at an
unaligned address. Most RISC processors, for example, cannot access
memory except at 32-bit address boundaries. To access a short or byte value,
some RISC processors require the software to read a 32-bit value and extract
the 16-bit or 8-bit value (that is, the CPU forces the software to treat bytes
and words as packed data). The extra instructions and memory accesses
needed to pack and unpack this data reduce the speed of memory access by a
considerable amount (that is, two or more instructions—usually more—may
be needed to fetch a byte or word from memory). Writing data to memory is
even worse because the CPU must first fetch the data from memory, merge

Previous
stack

contents

Return address

Old EBP value EBP+0

--1

+4

+8

Offset from EBP

Parameters

--5

--7

--13

--14

--11

--18

--19

d1

d2

d3

w1

w2

b1

b2

b3

Var iab le s in a High -Leve l Language 233

the new data with the old data, and then write the result back to memory.
Therefore, most RISC compilers won’t create an activation record similar
to the one in Figure 8-11. Instead, they will add padding bytes so that every
memory object begins at an address boundary that is a multiple of four bytes
(see Figure 8-12).

In Figure 8-12 notice that all of the variables are at addresses that are
multiples of 32 bits. Therefore, a RISC processor has no problems accessing
any of these variables. The cost, of course, is that the activation record is
quite a bit larger (the local variables consume 32 bytes rather than 19 bytes).

Although the example in Figure 8-12 is typical for RISC-based compilers,
don’t get the impression that compilers for CISC CPUs won’t do this as well.
Many compilers for the 80x86, for example, will also build this activation
record in order to improve performance of the code the compiler generates.
Although declaring your variables in a misaligned fashion may not slow down
your code on a CISC CPU, it may result in additional memory usage.

Figure 8-12: RISC compilers force aligned access by adding
padding bytes

Of course, if you work in assembly language, it is generally up to you to
declare your variables in a manner that is appropriate or efficient for your
particular processor. In HLA (on the 80x86), for example, the following
two procedure declarations result in the activation records appearing in
Figures 8-10, 8-11, and 8-12:

procedure someFunction; @nodisplay; @noalignstack;

var

 d1 :dword;

 d2 :dword;

 d3 :dword;

Previous
stack

contents

Return address

Old EBP value EBP+0

–4

+4

+8

Offset from EBP

d1

d2

d3

w1

w2

b1

b2

Parameters

b3

–8

–12

–20

–24

–16

–28

–32

Padding bytes

234 Chap te r 8

 w1 :word;

 w2 :word;

 b1 :byte;

 b2 :byte;

 b3 :byte;

begin someFunction;

 .

 .

 .

end someFunction;

procedure someFunction2; @nodisplay; @noalignstack;

var

 b1 :byte;

 d1 :dword;

 w1 :word;

 d2 :dword;

 w2 :word;

 b2 :byte;

 d3 :dword;

 b3 :byte;

begin someFunction2;

 .

 .

 .

end someFunction2;

procedure someFunction3; @nodisplay; @noalignstack;

var

 // HLA align directive forces alignment of the next declaration.

 align(4);

 b1 :byte;

 align(4);

 d1 :dword;

 align(4);

 w1 :word;

 align(4);

 d2 :dword;

 align(4);

 w2 :word;

 align(4);

 b2 :byte;

 align(4);

 d3 :dword;

 align(4);

 b3 :byte;

begin someFunction3;

 .

 .

 .

end someFunction3;

Var iab le s in a High -Leve l Language 235

HLA procedures someFunction and someFunction3 will produce the fastest-
running code on any 80x86 processor because all variables are aligned on an
appropriate boundary. HLA procedures someFunction and someFunction2 will
produce the most compact activation records on an 80x86 CPU because
there is no padding between variables in the activation record. If you’re
working in assembly language on a RISC CPU, then you’ll probably want to
choose the equivalent of someFunction or someFunction3 to make it easier to
access the variables in memory.

8.6.1 Records and Alignment

Records/structures in HLLs also have alignment issues about which you
should worry. Recently, CPU manufacturers have been promoting Application
Binary Interface (ABI) standards to promote interoperability between different
programming languages and implementations of those languages. Although
not all languages and compilers adhere to these suggestions, many of the
newer compilers do. Among other things, these ABI specifications describe
how the compilers should organize fields within a record or structure object
in memory. Although the rules vary by CPU, a generic description that is
applicable to most ABIs is that a compiler should align a record/structure
field at an offset that is a multiple of the object’s size. If two adjacent fields
in the record or structure have different sizes, and the placement of the first
field in the structure would cause the second field to appear at an offset that
is not a multiple of that second field’s native size, then the compiler will insert
some padding bytes to push the second field to a higher offset that is appro-
priate for that second object’s size.

In actual practice, ABIs for different CPUs have minor differences based
on the CPUs’ ability to access objects at different addresses in memory. Intel,
for example, suggests that compiler writers align bytes at any offset, words
at even offsets, and everything else at offsets that are a multiple of 4. Some
ABIs recommend placing 64-bit objects at 8-byte boundaries within a record.
Some CPUs, which have a difficult time accessing objects smaller than 32
bits, may suggest a minimum alignment of 32 bits for all objects in a record/
structure. The rules vary depending on the CPU and whether the manu-
facturer wants to promote faster executing code (the usual case) or smaller
data structures.

If you are writing code for a single CPU (e.g., an Intel-based PC) with a
single compiler, you should learn that compiler’s rules for padding fields
and adjust your declarations for maximum performance and minimal waste.
However, if you ever need to compile your code using several different com-
pilers, particularly compilers for several different CPUs, following one set of
rules will work fine on one machine and produce less efficient code on
several others. Fortunately, there are some rules that can help reduce the
inefficiencies created by recompiling for a different ABI.

From a performance/memory usage standpoint, the best solution is the
same rule we saw earlier for activation records: When declaring fields in a
record, group all like-sized objects together and put all the larger (scalar)

236 Chap te r 8

objects first and the smaller objects last in the record/structure.8 This scheme
will produce the least amount of waste (padding bytes) and provide the high-
est performance across most of the ABIs in existence. The only drawback to
this approach is that you have to organize the fields by their native size rather
than by their logical relationship to one another. However, because all fields
of a record/structure are logically related insofar as they are all members of
that same record/structure, this problem isn’t as bad as employing this
organization for all of a particular function’s local variables.

Many programmers try to add padding fields themselves to a structure.
For example, the following type of code is common in the Linux kernel and
other bits and pieces of overly hacked software:

typedef struct IveAligned

{

 char byteValue;

 char padding0[3];

 int dwordValue;

 short wordValue;

 char padding1[2];

 unsigned long dwordValue2;

 .

 .

 .

};

The padding0 and padding1 fields in this structure were added to manually
align the dwordValue and dwordValue2 fields at offsets that are even multiples of 4.

While this padding is not unreasonable, if you’re using a compiler that
doesn’t automatically align the fields, keep in mind that an attempt to compile
this code in a different machine can produce unexpected results. For exam-
ple, if a compiler aligns all fields on a 32-bit boundary, regardless of size, then
this structure declaration will consume two extra double words to hold the
two paddingX arrays. This winds up wasting space for no good reason. So, keep
this fact in mind if you decide to manually add the padding fields yourself.

Many compilers that automatically align fields in a structure provide an
option to turn off this facility. This is particularly true for compilers gener-
ating code for CPUs where the alignment is optional and the compiler only
does this to achieve a slight performance boost. If you’re going to manually
add padding fields to your record/structure, you obviously need to specify
this option so that the compiler doesn’t realign the fields after you’ve
manually aligned them.

In theory, a compiler is free to rearrange the offsets of local variables
within an activation record. However, it would be extremely rare for a com-
piler to rearrange the fields of a user-defined record or structure. Too many
external programs and data structures depend on the fields of a record
appearing in the same order as they are declared. This is particularly true

8 Generally, arrays and records/structures appearing as fields wind up at the end of the list of
fields, though you could group arrays with the objects whose size matches the array’s element
size as well.

Var iab le s in a High -Leve l Language 237

when passing record/structure data between code written in two separate
languages (for example, when calling a function written in assembly
language).

In assembly language, the amount of effort needed to align fields varies
from pure manual labor to a rich set of features capable of automatically
handling almost any ABI. Some (low-end) assemblers don’t even provide
record or structure data types. In such systems, the assembly programmer has
to manually specify the offsets into a record structure (typically by declaring,
as constants, the numeric offsets into the structure). Other assemblers (e.g.,
NASM) provide macros that automatically generate the equates for you. In
such systems as these, the programmer has to manually provide padding
fields to align certain fields on a given boundary. Some assemblers, such as
MASM and TASM, provide simple alignment facilities. You can specify the
value 1, 2, or 4 when declaring a struct in MASM or TASM, and the assembler
will align all fields on either the alignment value you specify or at an offset
that is a multiple of the object’s size, whichever is smaller. It accomplishes
this by automatically adding padding bytes to the structure. Also, note that
MASM (and TASM) will add a sufficient number of padding bytes to the end
of the structure so that the whole structure’s length is a multiple of the
alignment size. Consider the following struct declaration in MASM:

Student struct 2

score word ? ;offset 0

id byte ? ;offset 2, one byte of padding appears after this field

year dword ? ;offset 4

id2 byte ? ;offset 8

Student ends

In this example, MASM will add an extra byte of padding to the end of
the structure so that the structure’s length is a multiple of 2 bytes.

MASM and TASM also let you control the alignment of individual fields
within a structure by using the align directive. The following structure decla-
ration is equivalent to the current example (note the absence of the align-
ment value operand in the struct operand field):

Student struct

score word ? ;offset 0

id byte ? ;offset 2

 align 2 ;Injects one byte of padding.

year dword ? ;offset 4

id2 byte ? ;offset 8

 align 2 ;Adds one byte of padding to the end of the struct.

Student ends

The default field alignment for MASM/TASM structures is unaligned.
That is, a field begins at the next available offset within the structure, regard-
less of the field’s (and the previous field’s) size.

The High-Level Assembler (HLA) probably provides the greatest control
(both automatic and manual) over record field alignment. Like MASM, the

238 Chap te r 8

default record alignment is unaligned. Also, like MASM, you can use HLA’s
align directive to manually align fields in an HLA record. The following is
the HLA version of the previous MASM example:

type

 Student :record

 score :word;

 id :byte;

 align(2);

 year :dword;

 id2 :byte;

 align(2);

 endrecord;

HLA also lets you specify an automatic alignment for all fields in a record.
For example:

type

 Student :record[2] //This tells HLA to align all

 // fields on a word boundary

 score :word;

 id :byte;

 year :dword;

 id2 :byte;

 endrecord;

There is a subtle difference between this HLA record and the earlier
MASM structure (with automatic alignment). When you specify a directive of
the form Student struct 2 MASM will align all fields on a boundary that is an
multiple of 2 or a multiple of the object’s size, whichever is smaller. HLA, on
the other hand, will always align all fields on a 2-byte boundary using this
declaration, even if the field is a byte.

The fact that you can force field alignment to a minimum size is a nice
feature if you’re working with data structures generated on a different
machine (or compiler) that forces this kind of alignment. However, this
type of alignment can unnecessarily waste space in a record for certain
declarations if you only want the fields to be aligned on their natural
boundaries (which is what MASM is doing). Fortunately, HLA provides
another syntax for record declarations that let you specify both the maximum
and minimum alignment that HLA will apply to a field. That syntax takes
the following form:

recordID: record[maxAlign : minAlign]

<<fields>>

endrecord;

The maxAlign item specifies the largest alignment that HLA will use within
the record. HLA will align any object whose native size is larger than maxAlign
on a boundary of maxAlign bytes. Similarly, HLA will align any object whose
size is smaller than minAlign on a boundary of at least minAlign bytes. HLA

Var iab le s in a High -Leve l Language 239

will align objects whose native size is between minAlign and maxAlign on a
boundary that is a multiple of that object’s size. The following HLA and
MASM record/struct declarations are equivalent. Here’s MASM code:

Student struct 4

score word ? ;offset:0

id byte ? ;offset 2

; One byte of padding appears here

year dword ? ;offset 4

id2 byte ? ;offset:8

; 3 padding bytes appear here

courses dword ? ;offset:12

Student ends

Here’s the HLA code:

type

 // Align on 4-byte offset, or object's size, whichever

 // is the smaller of the two. Also, make sure that the

 // entire record is a multiple of 4 bytes long.

 Student :record[4:1]

 score :word;

 id :byte;

 year :dword

 id2 :byte;

 courses :dword;

 endrecord;

Although few HLLs provide facilities within the language’s design to
control the alignment of fields within records (or other data structures),
many compilers do provide extensions to those languages, in the form of
compiler pragmas, that let programmers specifying default variable and field
alignment. Because there are no standards for this, you’ll have to check
your particular compiler’s reference manual. Although such extensions
are nonstandard, they are often quite useful, especially when linking code
compiled by different languages or if you’re trying to squeeze the last bit of
performance out of a system.

8.7 For More Information

One of the best places to look for more information on how HLLs imple-
ment variables is a programming language textbook. Dozens of decent
programming design textbooks are available, for example:

� Programming Languages, Design and Implementation, Terrence Pratt and
Marvin Zelkowitz (Prentice Hall, 2001)

240 Chap te r 8

� Programming Languages, Principles and Practice, Kenneth Louden (Course
Technology, 2002)

� Concepts of Programming Languages, Robert Sebesta (Addison-Wesley, 2003)

� Programming Languages, Structures and Models, Herbert Dershem and
Michael Jipping (Wadsworth, 1990)

� The Programming Language Landscape, Henry Ledgard and Michael
Marcotty (SRA, 1986)

� Programming Language Concepts, Carlo Ghezzi and Jehdi Jazayeri
(Wiley, 1997)

Of course, any textbook on compiler design and construction can be a
source of information about implementating variables in an HLL. Here are a
few examples of compiler-construction textbooks you may want to consider
looking at:

� Compilers, Principles, Techniques, and Tools, Alfred Aho, Ravi Sethi, and
Jeffrey Ullman (Addison-Wesley, 1986)

� Compiler Construction: Theory and Practice, William Barret and John Couch
(SRA, 1986)

� A Retargetable C Compiler: Design and Implementation, Christopher Fraser
and David Hansen (Addison-Wesley Professional, 1995)

� Introduction to Compiler Design, Thomas Parsons (W. H. Freeman, 1992)

� Compiler Construction, Principles and Practice, Kenneth Louden (Course
Technology, 1997)

CPU manufacturers’ literature, data sheets, and books are also quite useful
for determining how compilers will often implement variables. For example,
The PowerPC Compiler Writer’s Guide, edited by Steve Hoxey, Faraydon Karim,
Bill Hay, and Hank Warren,9 is a great reference for programmers writing
code to run on a PowerPC processor; most PowerPC compiler writers have
used this reference to help them decide how to generate code for the PowerPC
processor. Similarly, many compiler writers have used Intel’s Pentium manual
set (including their Optimization Guide) to help them write code generators
for their compilers. These manuals may prove handy to someone who wants
to understand how 80x86-based compilers generate code.

Of course, the ultimate suggestion is to learn assembly language. If you
become an expert assembly language programmer, someone who knows
the intricacies of all the machine instructions for a particular processor,
then you’ll have a much better understanding of how a compiler will
generate code for that processor. If you’re interested in learning 80x86
assembly language, you might consider The Art of Assembly Language (No
Starch Press, 2003).

9 This document is available in PDF format on IBM’s website (www.ibm.com).

