
7
P A T T E R N M A T C H I N G W I T H

R E G U L A R E X P R E S S I O N S

You may be familiar with searching for text
by pressing ctrl-F and entering the words

you’re looking for. Regular expressions go one
step further: they allow you to specify a pattern of

text to search for. You may not know a business’s exact
phone number, but if you live in the United States or
Canada, you know it will be three digits, followed by a hyphen, and then
four more digits (and optionally, a three-digit area code at the start). This
is how you, as a human, know a phone number when you see it: 415-555-
1234 is a phone number, but 4,155,551,234 is not.

We also recognize all sorts of other text patterns every day: email
addresses have @ symbols in the middle, US social security numbers have
nine digits and two hyphens, website URLs often have periods and forward
slashes, news headlines use title case, social media hashtags begin with #
and contain no spaces, and more.

162 Chapter 7

Regular expressions are helpful, but few non-programmers know about
them even though most modern text editors and word processors, such as
Microsoft Word or OpenOffice, have find and find-and-replace features
that can search based on regular expressions. Regular expressions are
huge time-savers, not just for software users but also for programmers. In
fact, tech writer Cory Doctorow argues that we should be teaching regular
expressions even before programming:

Knowing [regular expressions] can mean the difference between
solving a problem in 3 steps and solving it in 3,000 steps. When
you’re a nerd, you forget that the problems you solve with a cou-
ple keystrokes can take other people days of tedious, error-prone
work to slog through.1

In this chapter, you’ll start by writing a program to find text patterns with-
out using regular expressions and then see how to use regular expressions to
make the code much less bloated. I’ll show you basic matching with regular
expressions and then move on to some more powerful features, such as string
substitution and creating your own character classes. Finally, at the end of the
chapter, you’ll write a program that can automatically extract phone numbers
and email addresses from a block of text.

Finding Patterns of Text Without Regular Expressions
Say you want to find an American phone number in a string. You know the
pattern if you’re American: three numbers, a hyphen, three numbers, a
hyphen, and four numbers. Here’s an example: 415-555-4242.

Let’s use a function named isPhoneNumber() to check whether a string
matches this pattern, returning either True or False. Open a new file editor
tab and enter the following code; then save the file as isPhoneNumber.py:

def isPhoneNumber(text):
  if len(text) != 12:

 return False
 for i in range(0, 3):

  if not text[i].isdecimal():
 return False

  if text[3] != '-':
 return False
 for i in range(4, 7):

  if not text[i].isdecimal():
 return False

  if text[7] != '-':
 return False

1. Cory Doctorow, “Here’s What ICT Should Really Teach Kids: How to Do Regular
Expressions,” Guardian, December 4, 2012, http://www.theguardian.com/technology/2012
/dec/04/ict-teach-kids-regular-expressions/.

http://www.theguardian.com/technology/2012/dec/04/ict-teach-kids-regular-expressions/
http://www.theguardian.com/technology/2012/dec/04/ict-teach-kids-regular-expressions/

Pattern Matching with Regular Expressions 163

 for i in range(8, 12):
  if not text[i].isdecimal():

 return False
  return True

print('Is 415-555-4242 a phone number?')
print(isPhoneNumber('415-555-4242'))
print('Is Moshi moshi a phone number?')
print(isPhoneNumber('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?
True
Is Moshi moshi a phone number?
False

The isPhoneNumber() function has code that does several checks to see
whether the string in text is a valid phone number. If any of these checks
fail, the function returns False. First the code checks that the string is
exactly 12 characters . Then it checks that the area code (that is, the
first three characters in text) consists of only numeric characters . The
rest of the function checks that the string follows the pattern of a phone
number: the number must have the first hyphen after the area code ,
three more numeric characters , then another hyphen , and finally
four more numbers . If the program execution manages to get past all
the checks, it returns True .

Calling isPhoneNumber() with the argument '415-555-4242' will return
True. Calling isPhoneNumber() with 'Moshi moshi' will return False; the first
test fails because 'Moshi moshi' is not 12 characters long.

If you wanted to find a phone number within a larger string, you would
have to add even more code to find the phone number pattern. Replace the
last four print() function calls in isPhoneNumber.py with the following:

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'
for i in range(len(message)):

  chunk = message[i:i+12]
  if isPhoneNumber(chunk):

 print('Phone number found: ' + chunk)
print('Done')

When this program is run, the output will look like this:

Phone number found: 415-555-1011
Phone number found: 415-555-9999
Done

164 Chapter 7

On each iteration of the for loop, a new chunk of 12 characters from
message is assigned to the variable chunk . For example, on the first itera-
tion, i is 0, and chunk is assigned message[0:12] (that is, the string 'Call me
at 4'). On the next iteration, i is 1, and chunk is assigned message[1:13]
(the string 'all me at 41'). In other words, on each iteration of the for
loop, chunk takes on the following values:

•	 'Call me at 4'

•	 'all me at 41'

•	 'll me at 415'

•	 'l me at 415-'

•	 . . . and so on.

You pass chunk to isPhoneNumber() to see whether it matches the phone
number pattern , and if so, you print the chunk.

Continue to loop through message, and eventually the 12 characters
in chunk will be a phone number. The loop goes through the entire string,
testing each 12-character piece and printing any chunk it finds that satisfies
isPhoneNumber(). Once we’re done going through message, we print Done.

While the string in message is short in this example, it could be millions
of characters long and the program would still run in less than a second. A
similar program that finds phone numbers using regular expressions would
also run in less than a second, but regular expressions make it quicker to
write these programs.

Finding Patterns of Text with Regular Expressions
The previous phone number–finding program works, but it uses a lot of
code to do something limited: the isPhoneNumber() function is 17 lines but
can find only one pattern of phone numbers. What about a phone number
formatted like 415.555.4242 or (415) 555-4242? What if the phone num-
ber had an extension, like 415-555-4242 x99? The isPhoneNumber() function
would fail to validate them. You could add yet more code for these addi-
tional patterns, but there is an easier way.

Regular expressions, called regexes for short, are descriptions for a pat-
tern of text. For example, a \d in a regex stands for a digit character—that
is, any single numeral from 0 to 9. The regex \d\d\d-\d\d\d-\d\d\d\d is used
by Python to match the same text pattern the previous isPhoneNumber()
function did: a string of three numbers, a hyphen, three more numbers,
another hyphen, and four numbers. Any other string would not match the
\d\d\d-\d\d\d-\d\d\d\d regex.

But regular expressions can be much more sophisticated. For example,
adding a 3 in braces ({3}) after a pattern is like saying, “Match this pattern
three times.” So the slightly shorter regex \d{3}-\d{3}-\d{4} also matches the
correct phone number format.

Pattern Matching with Regular Expressions 165

Creating Regex Objects
All the regex functions in Python are in the re module. Enter the following
into the interactive shell to import this module:

>>> import re

N O T E Most of the examples in this chapter will require the re module, so remember to import
it at the beginning of any script you write or any time you restart Mu. Otherwise,
you’ll get a NameError: name 're' is not defined error message.

Passing a string value representing your regular expression to
re.compile() returns a Regex pattern object (or simply, a Regex object).

To create a Regex object that matches the phone number pattern, enter
the following into the interactive shell. (Remember that \d means “a digit
character” and \d\d\d-\d\d\d-\d\d\d\d is the regular expression for a phone
number pattern.)

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

Now the phoneNumRegex variable contains a Regex object.

Matching Regex Objects
A Regex object’s search() method searches the string it is passed for any
matches to the regex. The search() method will return None if the regex pat-
tern is not found in the string. If the pattern is found, the search() method
returns a Match object, which have a group() method that will return the
actual matched text from the searched string. (I’ll explain groups shortly.)
For example, enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
>>> mo = phoneNumRegex.search('My number is 415-555-4242.')
>>> print('Phone number found: ' + mo.group())
Phone number found: 415-555-4242

The mo variable name is just a generic name to use for Match objects.
This example might seem complicated at first, but it is much shorter than
the earlier isPhoneNumber.py program and does the same thing.

Here, we pass our desired pattern to re.compile() and store the result-
ing Regex object in phoneNumRegex. Then we call search() on phoneNumRegex and
pass search() the string we want to match for during the search. The result
of the search gets stored in the variable mo. In this example, we know that
our pattern will be found in the string, so we know that a Match object will
be returned. Knowing that mo contains a Match object and not the null value
None, we can call group() on mo to return the match. Writing mo.group() inside
our print() function call displays the whole match, 415-555-4242.

166 Chapter 7

Review of Regular Expression Matching
While there are several steps to using regular expressions in Python, each
step is fairly simple.

1. Import the regex module with import re.

2. Create a Regex object with the re.compile() function. (Remember to use
a raw string.)

3. Pass the string you want to search into the Regex object’s search()
method. This returns a Match object.

4. Call the Match object’s group() method to return a string of the actual
matched text.

N O T E While I encourage you to enter the example code into the interactive shell, you
should also make use of web-based regular expression testers, which can show you
exactly how a regex matches a piece of text that you enter. I recommend the tester
at https://pythex.org/.

More Pattern Matching with Regular Expressions
Now that you know the basic steps for creating and finding regular expres-
sion objects using Python, you’re ready to try some of their more powerful
pattern-matching capabilities.

Grouping with Parentheses
Say you want to separate the area code from the rest of the phone number.
Adding parentheses will create groups in the regex: (\d\d\d)-(\d\d\d-\d\d\
d\d). Then you can use the group() match object method to grab the match-
ing text from just one group.

The first set of parentheses in a regex string will be group 1. The sec-
ond set will be group 2. By passing the integer 1 or 2 to the group() match
object method, you can grab different parts of the matched text. Passing 0
or nothing to the group() method will return the entire matched text. Enter
the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')
>>> mo = phoneNumRegex.search('My number is 415-555-4242.')
>>> mo.group(1)
'415'
>>> mo.group(2)
'555-4242'
>>> mo.group(0)
'415-555-4242'
>>> mo.group()
'415-555-4242'

If you would like to retrieve all the groups at once, use the groups()
method—note the plural form for the name.

Pattern Matching with Regular Expressions 167

>>> mo.groups()
('415', '555-4242')
>>> areaCode, mainNumber = mo.groups()
>>> print(areaCode)
415
>>> print(mainNumber)
555-4242

Since mo.groups() returns a tuple of multiple values, you can use the
multiple-assignment trick to assign each value to a separate variable, as in
the previous areaCode, mainNumber = mo.groups() line.

Parentheses have a special meaning in regular expressions, but what
do you do if you need to match a parenthesis in your text? For instance,
maybe the phone numbers you are trying to match have the area code set
in parentheses. In this case, you need to escape the (and) characters with
a backslash. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')
>>> mo = phoneNumRegex.search('My phone number is (415) 555-4242.')
>>> mo.group(1)
'(415)'
>>> mo.group(2)
'555-4242'

The \(and \) escape characters in the raw string passed to re.compile()
will match actual parenthesis characters. In regular expressions, the follow-
ing characters have special meanings:

. ^ $ * + ? { } [] \ | ()

If you want to detect these characters as part of your text pattern, you
need to escape them with a backslash:

\. \^ \$ * \+ \? \{ \} \[\] \\ \| \(\)

Make sure to double-check that you haven’t mistaken escaped parenthe-
ses \(and \) for parentheses (and) in a regular expression. If you receive
an error message about “missing)” or “unbalanced parenthesis,” you may
have forgotten to include the closing unescaped parenthesis for a group,
like in this example:

>>> re.compile(r'(\(Parentheses\)')
Traceback (most recent call last):
 --snip--
re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at
index 0 of the r'(\(Parentheses\)' string that is missing its corresponding
closing parenthesis.

168 Chapter 7

Matching Multiple Groups with the Pipe
The | character is called a pipe. You can use it anywhere you want to match
one of many expressions. For example, the regular expression r'Batman|Tina
Fey' will match either 'Batman' or 'Tina Fey'.

When both Batman and Tina Fey occur in the searched string, the first
occurrence of matching text will be returned as the Match object. Enter the
following into the interactive shell:

>>> heroRegex = re.compile (r'Batman|Tina Fey')
>>> mo1 = heroRegex.search('Batman and Tina Fey')
>>> mo1.group()
'Batman'

>>> mo2 = heroRegex.search('Tina Fey and Batman')
>>> mo2.group()
'Tina Fey'

N O T E You can find all matching occurrences with the findall() method that’s discussed in
“The findall() Method” on page 171.

You can also use the pipe to match one of several patterns as part
of your regex. For example, say you wanted to match any of the strings
'Batman', 'Batmobile', 'Batcopter', and 'Batbat'. Since all these strings start
with Bat, it would be nice if you could specify that prefix only once. This can
be done with parentheses. Enter the following into the interactive shell:

>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')
>>> mo = batRegex.search('Batmobile lost a wheel')
>>> mo.group()
'Batmobile'
>>> mo.group(1)
'mobile'

The method call mo.group() returns the full matched text 'Batmobile', while
mo.group(1) returns just the part of the matched text inside the first parenthe-
ses group, 'mobile'. By using the pipe character and grouping parentheses, you
can specify several alternative patterns you would like your regex to match.

If you need to match an actual pipe character, escape it with a backslash,
like \|.

Optional Matching with the Question Mark
Sometimes there is a pattern that you want to match only optionally. That
is, the regex should find a match regardless of whether that bit of text is
there. The ? character flags the group that precedes it as an optional part
of the pattern. For example, enter the following into the interactive shell:

>>> batRegex = re.compile(r'Bat(wo)?man')
>>> mo1 = batRegex.search('The Adventures of Batman')

Pattern Matching with Regular Expressions 169

>>> mo1.group()
'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

The (wo)? part of the regular expression means that the pattern wo is
an optional group. The regex will match text that has zero instances or one
instance of wo in it. This is why the regex matches both 'Batwoman' and 'Batman'.

Using the earlier phone number example, you can make the regex look
for phone numbers that do or do not have an area code. Enter the following
into the interactive shell:

>>> phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d')
>>> mo1 = phoneRegex.search('My number is 415-555-4242')
>>> mo1.group()
'415-555-4242'

>>> mo2 = phoneRegex.search('My number is 555-4242')
>>> mo2.group()
'555-4242'

You can think of the ? as saying, “Match zero or one of the group pre-
ceding this question mark.”

If you need to match an actual question mark character, escape it with \?.

Matching Zero or More with the Star
The * (called the star or asterisk) means “match zero or more”—the group
that precedes the star can occur any number of times in the text. It can be
completely absent or repeated over and over again. Let’s look at the Batman
example again.

>>> batRegex = re.compile(r'Bat(wo)*man')
>>> mo1 = batRegex.search('The Adventures of Batman')
>>> mo1.group()
'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

>>> mo3 = batRegex.search('The Adventures of Batwowowowoman')
>>> mo3.group()
'Batwowowowoman'

For 'Batman', the (wo)* part of the regex matches zero instances of wo
in the string; for 'Batwoman', the (wo)* matches one instance of wo; and for
'Batwowowowoman', (wo)* matches four instances of wo.

If you need to match an actual star character, prefix the star in the
regular expression with a backslash, *.

170 Chapter 7

Matching One or More with the Plus
While * means “match zero or more,” the + (or plus) means “match one or
more.” Unlike the star, which does not require its group to appear in the
matched string, the group preceding a plus must appear at least once. It is
not optional. Enter the following into the interactive shell, and compare it
with the star regexes in the previous section:

>>> batRegex = re.compile(r'Bat(wo)+man')
>>> mo1 = batRegex.search('The Adventures of Batwoman')
>>> mo1.group()
'Batwoman'

>>> mo2 = batRegex.search('The Adventures of Batwowowowoman')
>>> mo2.group()
'Batwowowowoman'

>>> mo3 = batRegex.search('The Adventures of Batman')
>>> mo3 == None
True

The regex Bat(wo)+man will not match the string 'The Adventures of
Batman', because at least one wo is required by the plus sign.

If you need to match an actual plus sign character, prefix the plus sign
with a backslash to escape it: \+.

Matching Specific Repetitions with Braces
If you have a group that you want to repeat a specific number of times,
follow the group in your regex with a number in braces. For example, the
regex (Ha){3} will match the string 'HaHaHa', but it will not match 'HaHa',
since the latter has only two repeats of the (Ha) group.

Instead of one number, you can specify a range by writing a minimum,
a comma, and a maximum in between the braces. For example, the regex
(Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the braces to leave
the minimum or maximum unbounded. For example, (Ha){3,} will match
three or more instances of the (Ha) group, while (Ha){,5} will match zero
to five instances. Braces can help make your regular expressions shorter.
These two regular expressions match identical patterns:

(Ha){3}
(Ha)(Ha)(Ha)

And these two regular expressions also match identical patterns:

(Ha){3,5}
((Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha))

Pattern Matching with Regular Expressions 171

Enter the following into the interactive shell:

>>> haRegex = re.compile(r'(Ha){3}')
>>> mo1 = haRegex.search('HaHaHa')
>>> mo1.group()
'HaHaHa'

>>> mo2 = haRegex.search('Ha')
>>> mo2 == None
True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha'. Since it doesn’t match 'Ha',
search() returns None.

Greedy and Non-greedy Matching
Since (Ha){3,5} can match three, four, or five instances of Ha in the string
'HaHaHaHaHa', you may wonder why the Match object’s call to group() in the
previous brace example returns 'HaHaHaHaHa' instead of the shorter possibili-
ties. After all, 'HaHaHa' and 'HaHaHaHa' are also valid matches of the regular
expression (Ha){3,5}.

Python’s regular expressions are greedy by default, which means that in
ambiguous situations they will match the longest string possible. The non-
greedy (also called lazy) version of the braces, which matches the shortest
string possible, has the closing brace followed by a question mark.

Enter the following into the interactive shell, and notice the differ-
ence between the greedy and non-greedy forms of the braces searching the
same string:

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')
>>> mo1 = greedyHaRegex.search('HaHaHaHaHa')
>>> mo1.group()
'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')
>>> mo2 = nongreedyHaRegex.search('HaHaHaHaHa')
>>> mo2.group()
'HaHaHa'

Note that the question mark can have two meanings in regular expres-
sions: declaring a non-greedy match or flagging an optional group. These
meanings are entirely unrelated.

The findall() Method
In addition to the search() method, Regex objects also have a findall()
method. While search() will return a Match object of the first matched text
in the searched string, the findall() method will return the strings of every

172 Chapter 7

match in the searched string. To see how search() returns a Match object
only on the first instance of matching text, enter the following into the
interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-555-0000')
>>> mo.group()
'415-555-9999'

On the other hand, findall() will not return a Match object but a list of
strings—as long as there are no groups in the regular expression. Each string in
the list is a piece of the searched text that matched the regular expression.
Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups
>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return
a list of tuples. Each tuple represents a found match, and its items are the
matched strings for each group in the regex. To see findall() in action,
enter the following into the interactive shell (notice that the regular expres-
sion being compiled now has groups in parentheses):

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups
>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')
[('415', '555', '9999'), ('212', '555', '0000')]

To summarize what the findall() method returns, remember the
following:

•	 When called on a regex with no groups, such as \d\d\d-\d\d\d-\d\
d\d\d, the method findall() returns a list of string matches, such as
['415-555-9999', '212-555-0000'].

•	 When called on a regex that has groups, such as (\d\d\d)-(\d\d\d)
-(\d\d\d\d), the method findall() returns a list of tuples of strings
(one string for each group), such as [('415', '555', '9999'), ('212',
'555', '0000')].

Character Classes
In the earlier phone number regex example, you learned that \d could
stand for any numeric digit. That is, \d is shorthand for the regular expres-
sion (0|1|2|3|4|5|6|7|8|9). There are many such shorthand character classes, as
shown in Table 7-1.

Pattern Matching with Regular Expressions 173

Table 7-1: Shorthand Codes for Common Character Classes

Shorthand character class Represents

\d Any numeric digit from 0 to 9.
\D Any character that is not a numeric digit from 0 to 9.
\w Any letter, numeric digit, or the underscore character.

(Think of this as matching “word” characters.)
\W Any character that is not a letter, numeric digit, or the

underscore character.
\s Any space, tab, or newline character. (Think of this as

matching “space” characters.)
\S Any character that is not a space, tab, or newline.

Character classes are nice for shortening regular expressions. The char-
acter class [0-5] will match only the numbers 0 to 5; this is much shorter
than typing (0|1|2|3|4|5). Note that while \d matches digits and \w matches
digits, letters, and the underscore, there is no shorthand character class
that matches only letters. (Though you can use the [a-zA-Z] character class,
as explained next.)

For example, enter the following into the interactive shell:

>>> xmasRegex = re.compile(r'\d+\s\w+')
>>> xmasRegex.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids, 7
swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')
['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '6
geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

The regular expression \d+\s\w+ will match text that has one or more
numeric digits (\d+), followed by a whitespace character (\s), followed by
one or more letter/digit/underscore characters (\w+). The findall() method
returns all matching strings of the regex pattern in a list.

Making Your Own Character Classes
There are times when you want to match a set of characters but the short-
hand character classes (\d, \w, \s, and so on) are too broad. You can define
your own character class using square brackets. For example, the character
class [aeiouAEIOU] will match any vowel, both lowercase and uppercase. Enter
the following into the interactive shell:

>>> vowelRegex = re.compile(r'[aeiouAEIOU]')
>>> vowelRegex.findall('RoboCop eats baby food. BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']

174 Chapter 7

You can also include ranges of letters or numbers by using a hyphen.
For example, the character class [a-zA-Z0-9] will match all lowercase letters,
uppercase letters, and numbers.

Note that inside the square brackets, the normal regular expression
symbols are not interpreted as such. This means you do not need to escape
the ., *, ?, or () characters with a preceding backslash. For example, the
character class [0-5.] will match digits 0 to 5 and a period. You do not need
to write it as [0-5\.].

By placing a caret character (^) just after the character class’s opening
bracket, you can make a negative character class. A negative character class
will match all the characters that are not in the character class. For example,
enter the following into the interactive shell:

>>> consonantRegex = re.compile(r'[^aeiouAEIOU]')
>>> consonantRegex.findall('RoboCop eats baby food. BABY FOOD.')
['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '
', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Now, instead of matching every vowel, we’re matching every character
that isn’t a vowel.

The Caret and Dollar Sign Characters
You can also use the caret symbol (^) at the start of a regex to indicate that
a match must occur at the beginning of the searched text. Likewise, you can
put a dollar sign ($) at the end of the regex to indicate the string must end
with this regex pattern. And you can use the ^ and $ together to indicate
that the entire string must match the regex—that is, it’s not enough for a
match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings
that begin with 'Hello'. Enter the following into the interactive shell:

>>> beginsWithHello = re.compile(r'^Hello')
>>> beginsWithHello.search('Hello, world!')
<re.Match object; span=(0, 5), match='Hello'>
>>> beginsWithHello.search('He said hello.') == None
True

The r'\d$' regular expression string matches strings that end with a
numeric character from 0 to 9. Enter the following into the interactive shell:

>>> endsWithNumber = re.compile(r'\d$')
>>> endsWithNumber.search('Your number is 42')
<re.Match object; span=(16, 17), match='2'>
>>> endsWithNumber.search('Your number is forty two.') == None
True

Pattern Matching with Regular Expressions 175

The r'^\d+$' regular expression string matches strings that both begin
and end with one or more numeric characters. Enter the following into the
interactive shell:

>>> wholeStringIsNum = re.compile(r'^\d+$')
>>> wholeStringIsNum.search('1234567890')
<re.Match object; span=(0, 10), match='1234567890'>
>>> wholeStringIsNum.search('12345xyz67890') == None
True
>>> wholeStringIsNum.search('12 34567890') == None
True

The last two search() calls in the previous interactive shell example
demonstrate how the entire string must match the regex if ^ and $ are used.

I always confuse the meanings of these two symbols, so I use the mne-
monic “Carrots cost dollars” to remind myself that the caret comes first and
the dollar sign comes last.

The Wildcard Character
The . (or dot) character in a regular expression is called a wildcard and will
match any character except for a newline. For example, enter the following
into the interactive shell:

>>> atRegex = re.compile(r'.at')
>>> atRegex.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']

Remember that the dot character will match just one character, which
is why the match for the text flat in the previous example matched only lat.
To match an actual dot, escape the dot with a backslash: \..

Matching Everything with Dot-Star
Sometimes you will want to match everything and anything. For example,
say you want to match the string 'First Name:', followed by any and all text,
followed by 'Last Name:', and then followed by anything again. You can
use the dot-star (.*) to stand in for that “anything.” Remember that the
dot character means “any single character except the newline,” and the
star character means “zero or more of the preceding character.”

Enter the following into the interactive shell:

>>> nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)')
>>> mo = nameRegex.search('First Name: Al Last Name: Sweigart')
>>> mo.group(1)
'Al'
>>> mo.group(2)
'Sweigart'

176 Chapter 7

The dot-star uses greedy mode: It will always try to match as much text as
possible. To match any and all text in a non-greedy fashion, use the dot, star,
and question mark (.*?). Like with braces, the question mark tells Python
to match in a non-greedy way.

Enter the following into the interactive shell to see the difference
between the greedy and non-greedy versions:

>>> nongreedyRegex = re.compile(r'<.*?>')
>>> mo = nongreedyRegex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man>'

>>> greedyRegex = re.compile(r'<.*>')
>>> mo = greedyRegex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man> for dinner.>'

Both regexes roughly translate to “Match an opening angle bracket,
followed by anything, followed by a closing angle bracket.” But the string
'<To serve man> for dinner.>' has two possible matches for the closing angle
bracket. In the non-greedy version of the regex, Python matches the short-
est possible string: '<To serve man>'. In the greedy version, Python matches
the longest possible string: '<To serve man> for dinner.>'.

Matching Newlines with the Dot Character
The dot-star will match everything except a newline. By passing re.DOTALL as
the second argument to re.compile(), you can make the dot character match
all characters, including the newline character.

Enter the following into the interactive shell:

>>> noNewlineRegex = re.compile('.*')
>>> noNewlineRegex.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.'

>>> newlineRegex = re.compile('.*', re.DOTALL)
>>> newlineRegex.search('Serve the public trust.\nProtect the innocent.
\nUphold the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex noNewlineRegex, which did not have re.DOTALL passed to the
re.compile() call that created it, will match everything only up to the first
newline character, whereas newlineRegex, which did have re.DOTALL passed to
re.compile(), matches everything. This is why the newlineRegex.search() call
matches the full string, including its newline characters.

Pattern Matching with Regular Expressions 177

Review of Regex Symbols
This chapter covered a lot of notation, so here’s a quick review of what you
learned about basic regular expression syntax:

•	 The ? matches zero or one of the preceding group.

•	 The * matches zero or more of the preceding group.

•	 The + matches one or more of the preceding group.

•	 The {n} matches exactly n of the preceding group.

•	 The {n,} matches n or more of the preceding group.

•	 The {,m} matches 0 to m of the preceding group.

•	 The {n,m} matches at least n and at most m of the preceding group.

•	 {n,m}? or *? or +? performs a non-greedy match of the preceding group.

•	 ^spam means the string must begin with spam.

•	 spam$ means the string must end with spam.

•	 The . matches any character, except newline characters.

•	 \d, \w, and \s match a digit, word, or space character, respectively.

•	 \D, \W, and \S match anything except a digit, word, or space character,
respectively.

•	 [abc] matches any character between the brackets (such as a, b, or c).

•	 [^abc] matches any character that isn’t between the brackets.

Case-Insensitive Matching
Normally, regular expressions match text with the exact casing you specify.
For example, the following regexes match completely different strings:

>>> regex1 = re.compile('RoboCop')
>>> regex2 = re.compile('ROBOCOP')
>>> regex3 = re.compile('robOcop')
>>> regex4 = re.compile('RobocOp')

But sometimes you care only about matching the letters without wor-
rying whether they’re uppercase or lowercase. To make your regex case-
insensitive, you can pass re.IGNORECASE or re.I as a second argument to
re.compile(). Enter the following into the interactive shell:

>>> robocop = re.compile(r'robocop', re.I)
>>> robocop.search('RoboCop is part man, part machine, all cop.').group()
'RoboCop'

>>> robocop.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'

>>> robocop.search('Al, why does your programming book talk about robocop so much?').group()
'robocop'

178 Chapter 7

Substituting Strings with the sub() Method
Regular expressions can not only find text patterns but can also substitute
new text in place of those patterns. The sub() method for Regex objects
is passed two arguments. The first argument is a string to replace any
matches. The second is the string for the regular expression. The sub()
method returns a string with the substitutions applied.

For example, enter the following into the interactive shell:

>>> namesRegex = re.compile(r'Agent \w+')
>>> namesRegex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent Bob.')
'CENSORED gave the secret documents to CENSORED.'

Sometimes you may need to use the matched text itself as part of the
substitution. In the first argument to sub(), you can type \1, \2, \3, and so
on, to mean “Enter the text of group 1, 2, 3, and so on, in the substitution.”

For example, say you want to censor the names of the secret agents by
showing just the first letters of their names. To do this, you could use the
regex Agent (\w)\w* and pass r'\1****' as the first argument to sub(). The \1
in that string will be replaced by whatever text was matched by group 1—
that is, the (\w) group of the regular expression.

>>> agentNamesRegex = re.compile(r'Agent (\w)\w*')
>>> agentNamesRegex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent
Eve knew Agent Bob was a double agent.')
A**** told C**** that E**** knew B**** was a double agent.'

Managing Complex Regexes
Regular expressions are fine if the text pattern you need to match is simple.
But matching complicated text patterns might require long, convoluted reg-
ular expressions. You can mitigate this by telling the re.compile() function
to ignore whitespace and comments inside the regular expression string.
This “verbose mode” can be enabled by passing the variable re.VERBOSE as
the second argument to re.compile().

Now instead of a hard-to-read regular expression like this:

phoneRegex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}
(\s*(ext|x|ext.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines with comments
like this:

phoneRegex = re.compile(r'''(
 (\d{3}|\(\d{3}\))? # area code
 (\s|-|\.)? # separator
 \d{3} # first 3 digits
 (\s|-|\.) # separator
 \d{4} # last 4 digits

Pattern Matching with Regular Expressions 179

 (\s*(ext|x|ext.)\s*\d{2,5})? # extension
)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to
create a multiline string so that you can spread the regular expression defi-
nition over many lines, making it much more legible.

The comment rules inside the regular expression string are the same
as regular Python code: the # symbol and everything after it to the end
of the line are ignored. Also, the extra spaces inside the multiline string
for the regular expression are not considered part of the text pattern to be
matched. This lets you organize the regular expression so it’s easier to read.

Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE
What if you want to use re.VERBOSE to write comments in your regular
expression but also want to use re.IGNORECASE to ignore capitalization?
Unfortunately, the re.compile() function takes only a single value as its
second argument. You can get around this limitation by combining the
re.IGNORECASE, re.DOTALL, and re.VERBOSE variables using the pipe character
(|), which in this context is known as the bitwise or operator.

So if you want a regular expression that’s case-insensitive and includes
newlines to match the dot character, you would form your re.compile() call
like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument will look like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions
of Python. The details of the bitwise operators are beyond the scope of this
book, but check out the resources at https://nostarch.com/automatestuff2/ for
more information. You can also pass other options for the second argument;
they’re uncommon, but you can read more about them in the resources, too.

Project: Phone Number and Email Address Extractor
Say you have the boring task of finding every phone number and email
address in a long web page or document. If you manually scroll through
the page, you might end up searching for a long time. But if you had a pro-
gram that could search the text in your clipboard for phone numbers and
email addresses, you could simply press ctrl-A to select all the text, press
ctrl-C to copy it to the clipboard, and then run your program. It could
replace the text on the clipboard with just the phone numbers and email
addresses it finds.

180 Chapter 7

Whenever you’re tackling a new project, it can be tempting to dive right
into writing code. But more often than not, it’s best to take a step back and
consider the bigger picture. I recommend first drawing up a high-level plan
for what your program needs to do. Don’t think about the actual code yet—
you can worry about that later. Right now, stick to broad strokes.

For example, your phone and email address extractor will need to do
the following:

1. Get the text off the clipboard.

2. Find all phone numbers and email addresses in the text.

3. Paste them onto the clipboard.

Now you can start thinking about how this might work in code. The
code will need to do the following:

1. Use the pyperclip module to copy and paste strings.

2. Create two regexes, one for matching phone numbers and the other
for matching email addresses.

3. Find all matches, not just the first match, of both regexes.

4. Neatly format the matched strings into a single string to paste.

5. Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you
can focus on each of these steps separately. Each step is fairly manageable
and expressed in terms of things you already know how to do in Python.

Step 1: Create a Regex for Phone Numbers
First, you have to create a regular expression to search for phone numbers.
Create a new file, enter the following, and save it as phoneAndEmail.py:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
 (\d{3}|\(\d{3}\))? # area code
 (\s|-|\.)? # separator
 (\d{3}) # first 3 digits
 (\s|-|\.) # separator
 (\d{4}) # last 4 digits
 (\s*(ext|x|ext.)\s*(\d{2,5}))? # extension
)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

Pattern Matching with Regular Expressions 181

The TODO comments are just a skeleton for the program. They’ll be
replaced as you write the actual code.

The phone number begins with an optional area code, so the area code
group is followed with a question mark. Since the area code can be just three
digits (that is, \d{3}) or three digits within parentheses (that is, \(\d{3}\)),
you should have a pipe joining those parts. You can add the regex comment
Area code to this part of the multiline string to help you remember what
(\d{3}|\(\d{3}\))? is supposed to match.

The phone number separator character can be a space (\s), hyphen (-),
or period (.), so these parts should also be joined by pipes. The next few
parts of the regular expression are straightforward: three digits, followed
by another separator, followed by four digits. The last part is an optional
extension made up of any number of spaces followed by ext, x, or ext., fol-
lowed by two to five digits.

N O T E It’s easy to get mixed up with regular expressions that contain groups with parenthe-
ses () and escaped parentheses \(\). Remember to double-check that you’re using
the correct one if you get a “missing), unterminated subpattern” error message.

Step 2: Create a Regex for Email Addresses
You will also need a regular expression that can match email addresses.
Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
--snip--

Create email regex.
emailRegex = re.compile(r'''(

  [a-zA-Z0-9._%+-]+ # username
  @ # @ symbol
  [a-zA-Z0-9.-]+ # domain name

 (\.[a-zA-Z]{2,4}) # dot-something
)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address  is one or more characters
that can be any of the following: lowercase and uppercase letters, numbers,
a dot, an underscore, a percent sign, a plus sign, or a hyphen. You can put
all of these into a character class: [a-zA-Z0-9._%+-].

The domain and username are separated by an @ symbol . The
domain name  has a slightly less permissive character class with only
letters, numbers, periods, and hyphens: [a-zA-Z0-9.-]. And last will be

182 Chapter 7

the “dot-com” part (technically known as the top-level domain), which can
really be dot-anything. This is between two and four characters.

The format for email addresses has a lot of weird rules. This regular
expression won’t match every possible valid email address, but it’ll match
almost any typical email address you’ll encounter.

Step 3: Find All Matches in the Clipboard Text
Now that you have specified the regular expressions for phone numbers
and email addresses, you can let Python’s re module do the hard work of
finding all the matches on the clipboard. The pyperclip.paste() function
will get a string value of the text on the clipboard, and the findall() regex
method will return a list of tuples.

Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(
--snip--

Find matches in clipboard text.
text = str(pyperclip.paste())

 matches = []
 for groups in phoneRegex.findall(text):

 phoneNum = '-'.join([groups[1], groups[3], groups[5]])
 if groups[8] != '':
 phoneNum += ' x' + groups[8]
 matches.append(phoneNum)

 for groups in emailRegex.findall(text):
 matches.append(groups[0])

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for
each group in the regular expression. Remember that group 0 matches the
entire regular expression, so the group at index 0 of the tuple is the one you
are interested in.

As you can see at , you’ll store the matches in a list variable named
matches. It starts off as an empty list, and a couple for loops. For the email
addresses, you append group 0 of each match . For the matched phone
numbers, you don’t want to just append group 0. While the program detects
phone numbers in several formats, you want the phone number appended
to be in a single, standard format. The phoneNum variable contains a string
built from groups 1, 3, 5, and 8 of the matched text . (These groups are
the area code, first three digits, last four digits, and extension.)

Pattern Matching with Regular Expressions 183

Step 4: Join the Matches into a String for the Clipboard
Now that you have the email addresses and phone numbers as a list of strings
in matches, you want to put them on the clipboard. The pyperclip.copy() func-
tion takes only a single string value, not a list of strings, so you call the join()
method on matches.

To make it easier to see that the program is working, let’s print any
matches you find to the terminal. If no phone numbers or email addresses
were found, the program should tell the user this.

Make your program look like the following:

#! python3
phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

--snip--
for groups in emailRegex.findall(text):
 matches.append(groups[0])

Copy results to the clipboard.
if len(matches) > 0:
 pyperclip.copy('\n'.join(matches))
 print('Copied to clipboard:')
 print('\n'.join(matches))
else:
 print('No phone numbers or email addresses found.')

Running the Program
For an example, open your web browser to the No Starch Press contact page
at https://nostarch.com/contactus/, press ctrl-A to select all the text on the
page, and press ctrl-C to copy it to the clipboard. When you run this pro-
gram, the output will look something like this:

Copied to clipboard:
800-420-7240
415-863-9900
415-863-9950
info@nostarch.com
media@nostarch.com
academic@nostarch.com
info@nostarch.com

Ideas for Similar Programs
Identifying patterns of text (and possibly substituting them with the sub()
method) has many different potential applications. For example, you could:

•	 Find website URLs that begin with http:// or https://.

•	 Clean up dates in different date formats (such as 3/14/2019, 03-14-2019,
and 2015/3/19) by replacing them with dates in a single, standard format.

184 Chapter 7

•	 Remove sensitive information such as Social Security or credit
card numbers.

•	 Find common typos such as multiple spaces between words, acciden-
tally accidentally repeated words, or multiple exclamation marks at the
end of sentences. Those are annoying!!

Summary
While a computer can search for text quickly, it must be told precisely what
to look for. Regular expressions allow you to specify the pattern of charac-
ters you are looking for, rather than the exact text itself. In fact, some word
processing and spreadsheet applications provide find-and-replace features
that allow you to search using regular expressions.

The re module that comes with Python lets you compile Regex objects.
These objects have several methods: search() to find a single match, findall()
to find all matching instances, and sub() to do a find-and-replace substitution
of text.

You can find out more in the official Python documentation at https://
docs.python.org/3/library/re.html. Another useful resource is the tutorial
website https://www.regular-expressions.info/.

Practice Questions

1. What is the function that creates Regex objects?

2. Why are raw strings often used when creating Regex objects?

3. What does the search() method return?

4. How do you get the actual strings that match the pattern from a
Match object?

5. In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does
group 0 cover? Group 1? Group 2?

6. Parentheses and periods have specific meanings in regular expression
syntax. How would you specify that you want a regex to match actual
parentheses and period characters?

7. The findall() method returns a list of strings or a list of tuples of
strings. What makes it return one or the other?

8. What does the | character signify in regular expressions?

9. What two things does the ? character signify in regular expressions?

10. What is the difference between the + and * characters in regular
expressions?

11. What is the difference between {3} and {3,5} in regular expressions?

12. What do the \d, \w, and \s shorthand character classes signify in
regular expressions?

Pattern Matching with Regular Expressions 185

13. What do the \D, \W, and \S shorthand character classes signify in
regular expressions?

14. What is the difference between .* and .*??

15. What is the character class syntax to match all numbers and
lowercase letters?

16. How do you make a regular expression case-insensitive?

17. What does the . character normally match? What does it match if
re.DOTALL is passed as the second argument to re.compile()?

18. If numRegex = re.compile(r'\d+'), what will numRegex.sub('X', '12 drummers,
11 pipers, five rings, 3 hens') return?

19. What does passing re.VERBOSE as the second argument to re.compile()
allow you to do?

20. How would you write a regex that matches a number with commas for
every three digits? It must match the following:

• '42'

• '1,234'

• '6,368,745'

but not the following:

• '12,34,567' (which has only two digits between the commas)

• '1234' (which lacks commas)

21. How would you write a regex that matches the full name of someone
whose last name is Watanabe? You can assume that the first name that
comes before it will always be one word that begins with a capital letter.
The regex must match the following:

• 'Haruto Watanabe'

• 'Alice Watanabe'

• 'RoboCop Watanabe'

but not the following:

• 'haruto Watanabe' (where the first name is not capitalized)

• 'Mr. Watanabe' (where the preceding word has a nonletter character)

• 'Watanabe' (which has no first name)

• 'Haruto watanabe' (where Watanabe is not capitalized)

22. How would you write a regex that matches a sentence where the first word
is either Alice, Bob, or Carol; the second word is either eats, pets, or throws;
the third word is apples, cats, or baseballs; and the sentence ends with a
period? This regex should be case-insensitive. It must match the following:

• 'Alice eats apples.'

• 'Bob pets cats.'

• 'Carol throws baseballs.'

• 'Alice throws Apples.'

• 'BOB EATS CATS.'

186 Chapter 7

but not the following:

• 'RoboCop eats apples.'

• 'ALICE THROWS FOOTBALLS.'

• 'Carol eats 7 cats.'

Practice Projects
For practice, write programs to do the following tasks.

Date Detection
Write a regular expression that can detect dates in the DD/MM/YYYY for-
mat. Assume that the days range from 01 to 31, the months range from 01
to 12, and the years range from 1000 to 2999. Note that if the day or month
is a single digit, it’ll have a leading zero.

The regular expression doesn’t have to detect correct days for each
month or for leap years; it will accept nonexistent dates like 31/02/2020 or
31/04/2021. Then store these strings into variables named month, day, and
year, and write additional code that can detect if it is a valid date. April,
June, September, and November have 30 days, February has 28 days, and
the rest of the months have 31 days. February has 29 days in leap years.
Leap years are every year evenly divisible by 4, except for years evenly divis-
ible by 100, unless the year is also evenly divisible by 400. Note how this cal-
culation makes it impossible to make a reasonably sized regular expression
that can detect a valid date.

Strong Password Detection
Write a function that uses regular expressions to make sure the password
string it is passed is strong. A strong password is defined as one that is at
least eight characters long, contains both uppercase and lowercase charac-
ters, and has at least one digit. You may need to test the string against mul-
tiple regex patterns to validate its strength.

Regex Version of the strip() Method
Write a function that takes a string and does the same thing as the strip()
string method. If no other arguments are passed other than the string to
strip, then whitespace characters will be removed from the beginning and
end of the string. Otherwise, the characters specified in the second argu-
ment to the function will be removed from the string.

