
Developers can use the React library to cre-
ate a full-stack application’s user interface.

React is built upon the Node.js ecosystem,
and as one of the most commonly used web

frameworks, it currently forms the basis of more than
40 percent of the most visited websites.

To work effectively with React, you must understand the syntax used to
define the appearance of user interface elements and then combine these
into React components that can dynamically update. This chapter covers
everything you need to know to begin developing full-stack applications
using this library.

The Role of React
Modern frontend architectures split an application’s user interface into
small, self-contained, and reusable items. Some of these, such as headers,
navigations, and logos, might appear only once per page, while others are

4
R E A C T

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

54 Chapter 4

repeated elements that form the page’s contents, such as headlines, but-
tons, and teasers. Figure 4-1 shows some of these items. React’s syntax
embraces this pattern; the library focuses on building these independent
components and, in doing so, helps us develop our applications more
efficiently.

Logo

Headline

Navigation Header

Subheadline

Button #1 Button #2

Teasers

Figure 4-1: User interface components

React uses a declarative programming paradigm, through which you
create a user interface by describing the desired results instead of explic
itly listing all the steps necessary to create it, as is done in imperative pro-
gramming. A classic example of the declarative paradigm is HTML. Using
HTML, you describe a web page’s elements, and the browser then renders
the page. By contrast, you could use JavaScript to write an imperative pro-
gram that creates each HTML element. In doing so, you would explicitly list
the steps to build the website.

In addition, these user interface components are reactive. This means
two things: one, that they handle their own isolated states, and two, that
each component updates the page’s HTML as soon as its state changes.
Changes to the React code instantly affect a browser’s document object model
(DOM), which represents a website as a tree in which each HTML element is
a node. The DOM also provides an API for each node and for the website in
general, enabling scripts to modify a website or a specific node.

DOM operations, such as re-rendering a component, are expensive. To
update the DOM, React uses a virtual DOM, which is an in-memory clone
of the actual browser DOM that it later syncs with the real thing. This vir-
tual DOM allows for incremental updates that reduce the number of costly
operations on the browser. The virtual DOM is a crucial principle of React.
React calculates the difference between the virtual DOM and the real DOM
with every call to one of its render functions and then decides what to

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 55

update. Usually, React performs batch updates to lower the performance
impact further. This process of reconciliation lets React deliver fast and
responsive user interfaces.

Although React is primarily a user interface library, developers can also
use it to build single-page applications that don’t require middleware or a
backend. These apps are nothing more than a view layer rendered in the
browser. To some extent, they can be dynamic: for example, we can change
the page’s language, open an image gallery, or toggle an element’s visibility.
However, all of this occurs in the browser, with additional React modules,
rather than on the server.

We can also perform more advanced functionality, like updating the
browser’s location to simulate the existence of distinct pages, purely in the
browser, with React’s Router module. This module lets us define routes, sim-
ilar to the ones we defined in our Express.js server, on the frontend. As soon
as a user clicks an internal link, the routing component updates the view
and changes the browser’s location. This makes it seem as though they’ve
loaded another HTML page. In reality, we’ve just changed the current page’s
contents. In doing so, we avoided another set of server requests, so the
simulated page loads much more quickly. Also, because our JavaScript code
controls the transition between pages, we can add effects and animations to
these transitions.

Setting Up React
Unlike, say, the basic Express.js server you created in Exercise 1 on page 13,
which uses standard JavaScript and can run directly with Node.js, React relies
on an advanced setup with a complete build toolchain. For example, it uses a
custom JavaScript Syntax Extension (JSX) to describe HTML elements and
TypeScript for static typing, both of which require a transpiler to convert
the code to JavaScript. Therefore, the manual process for setting up React is
quite complex.

Thus, we generally rely on other tools. In the case of a single-page appli-
cation, we use a code generator, such as create-react-app, to scaffold it.
During this scaffolding process, create-react-app generates the boilerplate
code for a new React application, as well as the build chain and folder struc-
ture for the project. It also provides a consistent project layout that helps us
easily understand other React projects.

To run the examples in this chapter, one option is to scaffold a simple
TypeScript React app with create-react-app by following the steps at https://
create​-react​-app​.dev​/docs​/getting​-started​/. If you don’t want to create a dedicated
project, you can instead run code using React with a TypeScript template
in an online playground, such as https://codesandbox​.io or https://stackblitz​.com.
The playgrounds and create-react-app follow the same file structure. In both
cases, you should save your code to the default App.tsx file.

For more complex apps, we’d use a complete web application frame-
work such as Next.js, which provides the necessary setup out of the box.
Covered in Chapter 5, Next.js is the most popular framework for full-stack

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

56 Chapter 4

web applications that use React. Internally, Next.js employs a variation of
create-react-app for scaffolding. We’ll rely on it in future chapters to work
with React.

The JavaScript Syntax Extension
React uses JSX to define the appearance of user interface components.
JSX is an extension of JavaScript that a transpiler must convert before
the browser renders it to the DOM. While it has HTML-like syntax, it is
more than a simple templating language. Instead, it allows us to use any
JavaScript feature to describe React elements. For example, we can use
JSX syntax inside conditional statements, assign it to variables, and return
it from functions. The compiler will then embed any variable or valid
JavaScript expression wrapped in curly brackets ({}) into the HTML.

This logic allows us to, for instance, use array.map to loop over an array,
check each item for a certain condition, pass the item to another func-
tion, and create a set of JSX elements based on the function’s return value,
directly inside a page’s template. While this may sound abstract, we’ll use
this pattern extensively when we create React components in the Food
Finder application you’ll build in Part II.

An Example JSX Expression
JSX expressions, like those in Listing 4-1, are the most essential part of the
React user interfaces. This JavaScript code defines a JSX function expres-
sion, getElement, that takes one string as a parameter and returns a JSX.Element.

import React from "react";

export default function App() {
 const getElement = (weather: string): JSX.Element => {
 const element = <h1>The weather is {weather}</h1>;
 return element;
 };
 return getElement("sunny");
}

Listing 4-1: A minimal example of a JSX expression

The entry point for each React application is the App function. Like the
index.js file of our Express.js server, this function is executed when the appli-
cation starts. Here, we usually set up the global elements, such as stylesheets
and the overall page layout.

React renders the function’s return value to the browser. In Listing 4-1,
we immediately return an element. As the smallest building blocks of React
user interfaces, elements describe what you’ll see on the screen, just as HTML
elements do. Examples of elements include custom buttons, headlines, and
images.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 57

After importing the React package, we create the JSX element and
store it in an element constant. At first glance, you might wonder why it isn’t
wrapped in quotes, as it contains what appears to be a regular HTML h1
element and looks like a string. The answer is that it isn’t a string but a JSX
element from which the library creates HTML elements programmatically.
As a result, the code will display a message about the weather to the page.

As soon as we call the JSX expression, the React library transpiles it into
a regular JavaScript function call and creates an HTML string from the JSX
element displayed in the browser. In Chapter 3, you learned that all valid
JavaScript is also valid TypeScript. Hence, we can use JSX with TypeScript as
well. JSX files use a .jsx (JavaScript) or .tsx (TypeScript) extension. Paste this
code into the App.tsx file of the project you created, and the browser should
render an h1 HTML element with the text The weather is sunny either in the
preview pane of the online playground or in your browser.

The ReactDOM Package
One easy way to work with elements is to use the ReactDOM package, which
contains APIs for working with the DOM. Note that the elements you create
aren’t browser DOM elements. Instead, they’re plain JavaScript objects that
will be rendered, using React’s render function, to the virtual DOM’s root
element and then attached to the browser DOM.

React elements are immutable: once created, they cannot be changed. If
you do alter any part of the element, React will create a new element and re-
render the virtual DOM, then compare the virtual DOM with the browser
DOM to decide whether the browser DOM needs an update. We’ll use JSX
abstractions for these tasks; nonetheless, it’s good to understand how React
works under the hood. If you want to dig deeper, consult the official docu-
mentation at https://react.dev/learn.

Organizing Code into Components
We mentioned that components are independent, reusable pieces of code
built from React elements. Elements are objects that can contain other ele
ments. Once rendered to the virtual or browser DOM, they create DOM
nodes or whole DOM subtrees. Meanwhile, React components are classes or
functions that output elements and render them to the virtual DOM. We
will build a user interface using React components. For more information
about this distinction, read the deep dive at the official React blog: https://
reactjs​.org​/blog​/2015​/12​/18​/react​-components​-elements​-and​-instances​.html.

While other frameworks might separate a user interface’s code by tech-
nology, splitting it into HTML, CSS, and JavaScript files, React instead sepa-
rates code into these logical building blocks. As a result, a single physical
file contains all the information necessary for a component, regardless of
underlying technologies.

More concretely, a React component is a JavaScript function that, by
convention, starts with an uppercase letter. Furthermore, it takes a single
object argument, called props, and returns a React element. This props

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

58 Chapter 4

argument should never be modified inside the component and is consid-
ered immutable inside the React code.

Listing 4-2 shows a basic React component that displays the same weather
string as in the previous listings. In addition, we’ve added a custom inter-
face and a click handler. The custom interface enables us to set an attribute
on the JSX component and read its value in the TypeScript code. It’s a com-
mon way to pass values to a function component without a global state man-
agement library.

Here, we simply pass the component the same string used in the previ-
ous listings and render it to the DOM, but for a real-world application, the
weather string might be part of an API response. To get the weather data,
a parent component might query the API and then send this data through
the component’s attribute to the component’s code, or each component in the
application would need to query the API to access that data, impacting
the overall performance of the application.

The click handler enables us to react to user interactions. In JSX, click
handlers have the same names as in HTML, and we add them the way we
might add inline DOM events. For example, to react to a user clicking an
element, we add an onClick attribute with a callback function.

import React from "react";

export default function App() {

 interface WeatherProps {
 weather: string;
 }

 const clickHandler = (text: string): void => {
 alert(text);
 };

 const WeatherComponent = (props: WeatherProps): JSX.Element => {
 const text = `The weather is ${props.weather}`;
 return (<h1 onClick={() => clickHandler(text)}>{text}</h1>);
 };

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-2: A basic React component

First we create a custom interface for our new component’s properties.
We’ll use this interface for the component’s prop parameter later. Because
we set a weather attribute on the component and define a matching weather
property on the interface, we can access the value of the weather attribute
with props.weather in our TypeScript code.

Then we create the event handler as an arrow function with one string
parameter. We use an onClick event property similar to inline DOM events
and assign a callback function, clickHandler. As soon as the user clicks the
page’s headline, we display a simple alert box.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 59

Next, we define the component. As you can see, it’s a JSX expression
that implements the WeatherProps interface and returns a JSX element.
Inside the component, we use an untagged template literal to create text
and add the dynamic weather information with the value from the weather
attribute, via props.weather. Then we return the JSX element and, finally,
return and render the weather component, setting sunny as the attribute’s
value.

Paste this code into the App.tsx file. The browser should render an
h1 HTML element with the text The weather is sunny in the preview pane.
When you click the text, an alert box will display it once more. Change the
value of the weather attribute to display different weather strings.

Writing Class Components
There are two kinds of components in React: class components and func-
tion components. The component in Listing 4-2 is a function component,
which borrows heavily from functional programming. In particular, these
components follow the pattern of pure functions: they create some output
(JSX elements) based on some input (the props argument and the JSX com-
ponent’s attributes). While we emphasize this type of component in this
chapter, you should know the basics of class components too.

A class component follows the typical patterns of object-oriented pro-
gramming: it is defined as a class and inherits methods from its parent
React.Component class. Like all components, it has an argument called props
and returns a JSX element. Class components also have constructor and
super functions, and you can use the this keyword to refer to the current
component’s instance.

Of particular value, the internal property this.state provides you an
interface to store and access information about the component’s internal
state, such as opened elements, the current image in an image gallery, or,
as in the next example, a simple click counter. Of similar importance are
the class’s lifecycle methods, which run during specific lifecycle steps: for
example, whenever the component mounts, renders, updates, or unmounts.
In Listing 4-3, we use the componentDidMount lifecycle method. React runs
this method immediately after the component becomes part of the DOM.
It is similar to the browser’s DOMReady event, with which you might already be
familiar.

Listing 4-3 shows the previously created weather component defined
as a class component. To practice accessing the component’s state, we’ve
added a counter that will count the clicks on the headline element. Because
it records the internal component’s state, the counter resets on page reload.
Paste this code into the App.tsx file and click the headline to count up.

import React from "react";

export default function App() {
 interface WeatherProps {
 weather: string;
 }

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

60 Chapter 4

 type WeatherState = {
 count: number;
 };

 class WeatherComponent extends React.Component<WeatherProps, WeatherState> {
 constructor(props: WeatherProps) {
 super(props);
 this.state = {
 count: 0
 };
 }

 componentDidMount() {
 this.setState({ count: 1 });
 }

 clickHandler(): void {
 this.setState({ count: this.state.count + 1 });
 }

 render() {
 return (
 <h1 onClick={() => this.clickHandler()}>
 The weather is {this.props.weather}, and the counter shows{" "}
 {this.state.count}
 </h1>
);
 }
 }

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-3: A basic React class component

First we define the custom interface to use for the component’s proper-
ties. We also define a type to use in the counter we’ll create later.

Next, we define the class component, extending the base class React​
.Component. Following object-oriented programming patterns, the construc-
tor calls a super function and initializes the component’s state. We set our
counter to 0. As soon as the browser mounts the component, it calls the
lifecycle method componentDidMount, changing the component’s count variable
to 1. We modify the click handler to count the number of clicks instead of
displaying an alert box, and we call the render function. Here we return
the JSX elements that display the weather props and the current state as
HTML.

Finally, we return the WeatherComponent, and React initializes it. The pre-
view pane displays the string The weather is sunny, and the counter shows 1.
We see from the number 1 that the lifecycle method was indeed called.
Each click on the headline increases the number instantly, because of the
reactive nature of the component’s state. As soon as the state changes, React
re-renders the component and updates the view with the current value of
the state.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 61

Providing Reusable Behavior with Hooks
Function components can use hooks to provide reusable behaviors, such as
for accessing a component’s state. Hooks are functions that offer simple
and reusable interfaces to state and lifecycle features. Listing 4-4 shows the
same weather component we created in Listing 4-3, this time written as a
function component. It uses hooks instead of lifecycle methods to update
the component’s counter.

import React, { useState,useEffect } from "react";

export default function App() {

 interface WeatherProps {
 weather: string;
 }

 const WeatherComponent = (props: WeatherProps): JSX.Element => {

 const [count, setCount] = useState(0);
 useEffect(() => {setCount(1)},[]);

 return (
 <h1 onClick={() => setCount(count + 1)}>
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
 };

 return (<WeatherComponent weather="sunny" />);
}

Listing 4-4: A React function component that uses hooks

We’ve added two new features to this component: an indicator of the
component’s state and a way to run code as soon as we mount the compo-
nent. Therefore, we use the two hooks, useState and useEffect, by importing
them as named imports from the React module, then adding them to the
function component. The useState hook replaces the this.state property
from the class component, and the useEffect hooks the componentDidMount
lifecycle method. In addition, we replace the clickHandler from the previous
example with a simple inline function to update the counter.

Each call to a hook produces an entirely isolated state, so we can use
the same hook multiple times in the same component and trust that the
state will update. This pattern keeps the hook callbacks small and focused.
Also note that the runtime does not hoist hooks. They are called in the
order in which we define them in the code.

When you compare Listings 4-3 and 4-4, you should instantly see that
the function component is more readable and easier to understand. For this
reason, we’ll exclusively use function components in the rest of this book.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

62 Chapter 4

Working with Built-in Hooks
React provides a collection of built-in hooks. You’ve just seen the most
common ones, useState and useEffect. Another useful hook is useContext,
for sharing data among components. Other built-in hooks cover more
specific use cases to enhance the performance of your application or
handle specific edge cases. You can look them up as needed in the React
documentation.

You can also create custom hooks whenever you need to break a mono-
lithic component into smaller, reusable packages. Custom hooks follow
a specific naming convention. They start with use, followed by an action
beginning with an uppercase letter. You should define only one functional-
ity per hook to make it easily testable.

This section will guide you through the three most common hooks and
the benefits of using them.

Managing the Internal State with useState
A pure function uses only the data that is available inside the function.
Still, it can react to local state changes, such as the counter in the weather
component we created. The useState hook is probably the most-used one for
handling regional states. This internal component’s state is available only
inside the component and is never exposed to the outside.

Because the component state is reactive, React re-renders the compo-
nent as soon as we update its state, changing the value across the entire
component. However, React guarantees that the state is stable and won’t
change on re-renders.

The useState hook returns the reactive state variable and a setter func-
tion used to set the state, as shown in Listing 4-5.

const [count, setCount] = useState(0);

Listing 4-5: The useState hook viewed in isolation

We initialize the useState hook with the default value. The hook itself
returns the state variable count and the setter function we need to modify
the state variable’s value, because we cannot modify this variable directly.
For example, to set the state variable count we created in Listing 4-5 to 1, we
need to call the setCount function with the new value as a parameter, like
this: setCount(1). By convention, the setter function begins with a set fol-
lowed by the state variable’s name.

Handling Side Effects with useEffect
Pure functions should rely only on the data passed to them. When a
function uses or modifies data outside its local scope, we call this a side
effect. The simplest example of a side effect is modifying a global variable.
This is considered a bad practice both in JavaScript and in functional
programming.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 63

Sometimes, however, our components need to interact with the “out-
side world” or have an external dependency. In these cases, we can use the
useEffect hook, which handles side effects, providing an escape hatch from
the functional aspect of the component. For example, useEffect can manage
dependencies, call APIs, and fetch data required for the component.

This hook runs after React mounts the component into the layout and
the rendering process of the component is completed. It has an optional
return object, which runs before the component is unmounted. You can use
it for cleanup, for example, to remove event listeners.

One way to use this hook is to observe and react to dependencies. To do
this, we can pass it an optional array of dependencies. Any change to one of
these dependencies would trigger a rerun of the hook. If the dependency
array is empty, the hook won’t depend on any external value and never
reruns. This is the case in our weather component, where useEffect is exe-
cuted only after mounting and unmounting the component. It has no exter-
nal dependencies, so the dependency array remains empty and the hook
runs only once.

Sharing Global Data with useContext and Context Providers
Ideally, React’s function components would be pure functions that oper-
ate only on data passed through the props parameter. Alas, a component
might sometimes need to consume a shared, global state. In this case,
React implements the context provider to share global data with a tree of
child components.

The context provider wraps the child components, and we can access
the shared data with the useContext hook. As the context value changes,
React automatically re-renders all child components. Thus, it is quite an
expensive hook. You shouldn’t use it for datasets that change frequently.

In the full-stack application you’ll build in Part II, you’ll use useContext
to share session data with child components. Shared contexts are also often
employed to keep track of color schemes and themes. Listing 4-6 shows how
to consume a theme through a context provider.

import React, { useState, createContext, useContext } from "react";

export default function App() {
 const ThemeContext = createContext("");

 const ContextComponent = (): JSX.Element => {

 const [theme, setTheme] = useState("dark");

 return (
 <div>
 <ThemeContext.Provider value={theme}>
 <button onClick={() => setTheme(theme == "dark" ? "light" : "dark")}>
 Toggle theme
 </button>
 <Headline />

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

64 Chapter 4

 </ThemeContext.Provider>
 </div>
);
 };

 const Headline = (): JSX.Element => {
 const theme = useContext(ThemeContext);
 return (<h1 className={theme}>Current theme: {theme}</h1>);
 };

 return (<ContextComponent />);
}

Listing 4-6: A complete context provider example

First we import the necessary functions from the React package and use
the createContext function to initialize the ThemeContext. Next, we create the
parent component and name it ContextComponent. This is the wrapper that
holds the context provider and all child components.

In the ContextComponent, we create the local theme variable with useState and
set the stateful variable as the content the context provides. This enables
us to change the variable in the context from inside a child component.
Because we used a reactive stateful variable for the value, all instances of
the theme variable will instantly update across all child components.

We add a button element and toggle the value of the stateful variable
between light and dark whenever a user clicks the button. Finally, we cre-
ate the Headline component, which calls the useContext hook to get the theme
value provided by the ThemeContext to all child components. The Headline
component uses the theme value for the HTML class and displays the cur-
rent theme.

Exercise 4: Create a Reactive User Interface for the Express.js Server
Let’s use your new knowledge and our weather component to create a reac-
tive user interface for the Express.js server. The new React component will
allow us to update text on the web page by clicking it.

Adding React to the Server
First we’ll include React in our project. For experimentation purposes,
you can add the React library and the stand-alone version of the Babel.js
transpiler directly inside your HTML head tag. Be aware, however, that this
technique is not suitable for production. Transpiling code in the browser
is a slow process, and the JavaScript libraries we add here aren’t optimized.
Using React with a skeleton Express.js server requires a decent number of
tedious setup steps and a decent amount of maintenance. We’ll use Next.js
in Chapter 5 to simplify developing React applications.

Create a folder, named public, next to the package.json file and then cre-
ate an empty file called weather​.html inside it. Add the code in Listing 4-7,
which contains our React example with the weather component. Later,

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 65

we’ll create a new endpoint, /components/weather, that directly returns the
HTML file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Weather Component</title>
 <script src​="https://unpkg​.com​/react@18​/umd​/react​.development​.js"><​/script>
 <script src​="https://unpkg​.com​/react​-dom@18​/umd​/react​-dom​.development​.js"><​/script>
 <script src​="https://unpkg​.com​/@babel​/standalone​/babel​.min​.js"><​/script>
 </head>
 <body>
 <div id="root"></div>

 <script type="text/babel">
 function App() {

 const WeatherComponent = (props) => {

 const [count, setCount] = React​.useState(0);
 React​.useEffect(() => {
 setCount(1);
 }, []);

 return (
 <h1 onClick={() => setCount(count + 1)}>
 The weather is {props.weather},
 and the counter shows {count}
 </h1>
);
 };
 return (<WeatherComponent weather="sunny" />);
 }

 const container = document.getElementById("root");
 const root = ReactDOM.createRoot(container);
 root.render(<App />);
 </script>
 </body>
</html>

Listing 4-7: The static file ​/public​/weather​.html renders React in the browser.

First we add three React scripts to the weather​.html file: these are
react.development, react.dom.development, and the stand-alone babel.js, which
are all similar to the import of React we previously used in the App.tsx file.
Then we add ReactDOM to let React interact with the DOM. The three files
add a global property, React, to window.object. We use this property as a global
variable to reference React functions. The stand-alone Babel script adds the
Babel.js transpiler, which we need to convert the code from JSX to JavaScript.

Next, we add the weather component’s code we developed previously.
Instead of referencing the App.tsx file, we place app functions directly inside

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

66 Chapter 4

the HTML file and mark the script block as text/babel. This type tells Babel
to transpile the code inside the script tag into standard JavaScript.

We make a few simple modifications to the weather component’s code.
First we remove the type annotations, as they are allowed only in TypeScript
files. Then, because we are using the browser environment, we prefix the
hooks with their global property name, React. Finally, we use ReactDOM to
create the React root container and render the <App /> component there.

Creating the Endpoint for the Static HTML File
The second file we’ll edit is the index.ts file in the root directory. We add
the highlighted code in Listing 4-8 to add a new entry point, /components/
weather.

import { routeHello, routeAPINames, routeWeather } from "./routes.js";
import express, { Request, Response } from "express";

import path from "path";

const server = express();
const port = 3000;

--snip--
server.get("/components/weather", function (req: Request, res: Response): void {
 const filePath = path.join(process.cwd(), "public", "weather.html");
 res.setHeader("Content-Type", "text/html");
 res.sendFile(filePath);
});

server.listen(port, function (): void {
 console.log("Listening on " + port);
});

Listing 4-8: The refactored index.ts

To load the static HTML file, import path from Node.js’s default path
module. The path module provides all kinds of utilities for working with
files and directories. In particular, we’ll use the join function to create a
valid path that meets the operation system’s format.

We use the default global process.cwd function to get the current work-
ing directory, and from there, we create the path to our HTML file. Then
we add the weather component’s entry point and set the response’s Content
-Type header to text/html. Finally, we use the sendFile function to send to the
browser the weather​.html file we created previously.

Running the Server
We need to transpile the server code to JavaScript, so we run TSC with npx
on the command line:

$ npx tsc

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

React 67

The generated files, index.js and routes.js, are similar to the previously
created ones. TSC doesn’t touch the static HTML. The stand-alone
Babel.js script converts the JSX code on runtime in the browser. Start the
server from your command line:

$ node index.js
Listening on 3000

Now visit http://localhost:3000​/components​/weather​-component in your browser.
You see the same text you saw when you rendered the weather component in
the React playground, as in Figure 4-2. As soon as you click the text, the click
handler increases the reactive state variable, and the counter shows the new
value.

Figure 4-2: Browser response from the Node.js web server

You successfully created your first React application. To gain more expe-
rience with React, try adding a custom button component for the click
counter, with a style attribute that uses a JSX expression to change the back-
ground color for odd and even counter values.

Summary
You should now have a solid foundation with which to create your React apps.
JSX elements are the building blocks of React components that return JSX
to be rendered as HTML in the DOM, via React’s virtual DOM. You also
explored the difference between class components and modern function
components, took a deep dive into React hooks, and used these hooks to
build a function component.

If you want to explore React’s full potential, take a look at the React tuto-
rials from W3Schools at https://www​.w3schools​.com​/REACT​/DEFAULT​.ASP and
those created by the React team at https://react.dev/learn/tutorial-tic-tac-toe.

In the next chapter, we’ll work with Next.js. Built on top of React, Next.js
is a production-ready full-stack web development framework for single-page
applications.

The Complete Developer (Sample Chapter) © 12/8/23 by Martin Krause

