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T H E  K O C H  S N O W F L A K E

We’ll start our Python adventures by fig-
uring out how to draw an interesting 

shape called the Koch snowflake, invented 
by Swedish mathematician Helge von Koch in 

1904. The Koch snowflake is a fractal—a type of figure 
that repeats itself as you zoom in to it.

Fractals derive their repeating nature from recursion, a technique where 
something is defined in terms of itself. In particular, you draw a fractal 
using a recursive algorithm, a repeating process where one repetition’s output 
becomes the input of the next repetition.

As you work through this chapter, you’ll learn:

•	 The basics of recursive algorithms and functions

•	 How to create graphics using the turtle module

•	 A recursive algorithm to draw the Koch snowflake

•	 Some linear algebra
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How It Works
Figure 1-1 shows what the Koch snowflake looks like. Notice how the large 
branch in the middle is repeated on a smaller scale by branches on the 
left and right. Similarly, the large branch in the middle is itself made up 
of smaller branches that echo the larger shape. This is the repeating, self-
similar nature of a fractal.

Figure 1-1: The Koch snowflake

If you know how to calculate the points that form the basic shape mak-
ing up the snowflake, you can develop an algorithm to perform the same 
calculations recursively. This way, you’ll draw smaller and smaller versions 
of that shape, building up the fractal. In this section, we’ll look generally 
at how recursion works. Then we’ll consider how to apply recursion, along 
with some linear algebra and Python’s turtle module, to draw the Koch 
snowflake.

Using Recursion
To get a feel for how recursion works, let’s take a look at a simple recursive 
algorithm: computing the factorial of a number. The factorial of a number 
can be defined by a function, as shown here:

f(N) = 1 × 2 × 3 × . . . × (N − 1) × N

In other words, the factorial of N is just the product of the numbers 1 
through N. You can rewrite this as:

f(N) = N × (N − 1) × . . . × 3 × 2 × 1

which can again be rewritten as:

f(N) = N × f(N − 1)

Wait, what did you just do? You defined f in terms of itself! That’s recur-
sion. Calling f(N) will end up calling f(N − 1), which will end up calling 
f(N − 2), and so on. But how do you know when to stop? Well, you have to 
define f(1) as 1, and that will be the deepest step of the recursion.
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Here’s how to implement the recursive factorial function in Python:

def factorial(N):
  1 if N == 1:
        return 1
    else:
      2 return N * factorial(N-1)

You handle the case where N is equal to 1 by simply returning 1 1, and 
you implement the recursive call by calling factorial() again 2, this time 
passing in N-1. The function will keep calling itself until N equals 1. The net 
effect is that when the function returns, it will have computed the product 
of all numbers 1 through N.

In general, when you’re trying to implement an algorithm using recur-
sion, follow these steps:

	1.	 Define a base case where the recursion ends. In our factorial example, 
you did this by defining f(1) as 1.

	2.	 Define the recursive step. For this you need to think about how to 
express the algorithm as a recursive process. In some algorithms, there 
can be multiple recursive calls from a function—as you’ll see soon.

Recursion is a helpful tool for problems that can be naturally parti-
tioned into smaller versions of themselves. The factorial algorithm is a 
perfect example of this partitioning, and as you’ll soon see, so is drawing 
the Koch snowflake. That said, recursion isn’t always the most efficient way 
to solve a problem. In some cases, it would make sense to re-implement the 
recursive algorithm in terms of loops. But the fact remains that recursive 
algorithms are often more compact and elegant compared to their loopy 
counterparts.

Computing the Snowflake
Now let’s look at how to construct the Koch snowflake. Figure 1-2 shows the 
basic pattern for drawing the snowflake. I’ll call this pattern a flake. The 
basis of the figure is the line segment AB of length d. The segment is split 
into three equal parts, AP1, P1P3, and P3B, each of which has a length r. 
Instead of directly connecting points P1 and P3, these points are connected 
through P2, which is chosen such that P1, P2, and P3 form an equilateral tri-
angle of side length r and height h. Point C, the midpoint of P1 and P3 (and 
by extension of A and B), falls directly beneath P2, such that AB and CP2 are 
perpendicular.
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Figure 1-2: The basic pattern for drawing a Koch snowflake

Once you understand how to calculate the points shown in Figure 1-2, 
you’ll be able to recursively draw smaller and smaller flakes to reproduce 
the Koch snowflake. Essentially, your goal is this: given points A and B, you 
want to compute the points P1, P2, and P3 and join them up as shown in the 
figure. To calculate those points, you’ll need to use some linear algebra, 
a mathematical discipline that lets you compute distances and figure out 
coordinates of points based on vectors, quantities that have both magnitude 
and direction.

Here’s a simple formula from linear algebra that you’ll be using. Say you 
have a point A in 3D space and a unit vector n̂ (a unit vector is a vector with a 
length of 1 unit). Point B at a distance d along this unit vector is given by:

B = A + d × n̂

You can easily verify this with an example. Take the case where 
A = (5, 0, 0) and n̂ = (0, 1, 0). What are the coordinates for a point B that’s 
10 units away from A along n̂? Using the previous formula, you get:

B = (5, 0, 0) + 10 × (0, 1, 0) = (5, 10, 0)

In other words, to get from A to B, you move 10 units along the positive y-axis.
Here’s another result you’ll use—let’s call it the perpendicular vector trick. 

Say you have a vector A = (a, b). If you have another vector B that’s perpen-
dicular to A, it can be expressed as B = (−b, a). You can verify that this trick 
works by taking the dot product of A and B. To take the dot product of a 
pair of two-dimensional vectors, multiply the first components from each 
vector, then multiply the second components from each vector, and finally 
add the results together. In this case, the dot product of A and B is:

BA •  = (a × −b) + (b × a) = −ab + ab = 0
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The dot product of two perpendicular vectors will always be zero, so B is 
indeed perpendicular to A.

With this in mind, let’s return to the flake in Figure 1-2. How can you 
calculate the position of P2, given the coordinates for points A and B? You 
know that P2 falls h distance away from point C along unit vector n̂. Your 
first linear algebra formula tells you:

P2 = C + h × n̂

Now let’s put those variables in terms that you know. First, C is the mid-
point of line AB, so C = (A + B) / 2. Next, h is the height of an equilateral 
triangle with side length r. The Pythagorean theorem tells you:

h = 3 
2

r

In this case, r is simply a third of the distance from A to B. If A has coordi-
nates (x1, y1) and B has coordinates (x2, y2), you can calculate the distance 
between them as:

d = √(x1 – x2)
2 + (y1 – y2)2

Then simply divide d by 3 to get r.
Finally, you need a way to express n̂. You know that n̂ is perpendicular 

to vector AB, and you can express AB by subtracting point A’s coordinates 
from point B’s: AB = (x2 − x1, y2 − y1)

The magnitude of AB is given by d = |AB|. You can now use the perpendicu-
lar vector trick to express n̂ in terms of A and B:

n =
(– ( y2 – y1), x2 – x1) ( y1 – y2)  (x2 – x1)=

|AB| d d
,ˆ

Next you need to compute P1 and P3. For this you’re going to use 
another result from linear algebra. Let’s say you have a line AB and a 
point C on the line. Let a be the distance of C from A and b be the distance 
of C from B. The point C is given by:

C =
(b × A) + (a × B) 

a + b

To understand this formula, think about what happens if C is the mid-
point of A and B, meaning a and b would be the same. In this case, you can 
intuit that C ought to equal (A + B) / 2. Substitute all the bs for as in the 
previous equation. You’ll get:

C = (a × A) + (a × B) 
a + a

=
A + B

2

With this new formula in mind, you can now compute P1 and P3. These 
points divide line AB into thirds, meaning the distance from P1 to B is twice 
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the distance from P1 to A (b = 2a), and the distance from P3 to A is twice the 
distance from P3 to B (a = 2b). Feeding this into the formula, you can there-
fore calculate the points as:

2 × A + B
2

P1 =  and  A + 2 × B
3P3 =

Now you have everything you need to draw the first level of the snow-
flake fractal. Once you decide on A and B, you know how to compute the 
points P1, P2, and P3. But what happens at the second level of the fractal? 
You take each individual line segment from the flake at the first level 
(Figure 1-2) and replace it with a smaller flake. The result is shown in 
Figure 1-3.

n̂

P2

P1 P3CA B

(x1,y1) (x2,y2)

Figure 1-3: The second step of Koch snowflake construction

Notice how each of the four line segments from Figure 1-2, AB1, P1P2, 
P2P3, and P3B, has become the basis for a new flake. In the Koch snowflake 
program, you’ll be able to use the endpoints of each line segment, for 
example, A and P1, as new values for A and B and recursively perform the 
same calculations used to arrive at the points in Figure 1-2.

At each level of the fractal, you’ll subdivide the snowflake again, draw-
ing smaller and smaller self-similar figures. This is the recursive step of the 
algorithm, which you’ll repeat until you reach a base case. This should hap-
pen when AB is smaller than a certain threshold—say, 10 pixels. When you 
hit that threshold, just draw the line segments and stop recursing.

To make the final output a bit fancy, you can draw three linked flakes as 
the first level of the fractal. This will give you the hexagonal symmetry of an 
actual snowflake. Figure 1-4 shows what the starting drawing will look like.
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Figure 1-4: Combining three snowflakes

Now that you know how to calculate the coordinates for making the 
snowflake, let’s see how to use those coordinates in Python to actually draw 
an image.

Drawing with turtle Graphics
In this chapter, you’ll use Python’s turtle module to draw the snowflake; it’s 
a simple drawing program modeled after the idea of a turtle dragging its 
tail through the sand, creating patterns. The turtle module includes meth-
ods you can use to set the position and color of the pen (the turtle’s tail) 
and many other useful functions for drawing.
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As you’ll see, all you need is a handful of graphics functions to draw the 
Koch snowflake. In fact, from the standpoint of turtle, drawing the snow-
flake is almost as easy as drawing a triangle. To prove it, and to give you a 
feel for how turtle works, the following program uses turtle to draw said 
triangle. Enter the code, save it as test_turtle.py, and run it in Python:

1 import turtle

def draw_triangle(x1, y1, x2, y2, x3, y3, t):
    # go to start of triangle
  2 t.up()
  3 t.setpos(x1, y1)
  4 t.down()
    t.setpos(x2, y2)
    t.setpos(x3, y3)
    t.setpos(x1, y1)
    t.up()

def main():
    print('testing turtle graphics...')

  5 t = turtle.Turtle()
  6 t.hideturtle()

  7 draw_triangle(-100, 0, 0, -173.2, 100, 0, t)

  8 turtle.mainloop()

# call main
if __name__ == '__main__':
    main()

You start by importing the turtle module 1. Next, you define the 
draw_triangle() method, whose parameters are three pairs of x-coordinates 
and y-coordinates (the three corners of a triangle), as well as t, a turtle 
object. The method starts by calling up() 2. This tells Python to move the 
pen up; in other words, take the pen off the virtual paper so that it won’t 
draw as you move the turtle. You want to position the turtle before you 
start drawing. The setpos() call 3 sets the position of the turtle to the first 
pair of x- and y-coordinates. Calling down() 4 sets the pen down, and for 
each of the subsequent setpos() calls, a line is drawn as the turtle moves to 
the next set of coordinates. The net result is a triangle drawing.

Next you declare a main() function to actually do the drawing. In it, 
you create the turtle object for drawing 5 and hide the turtle 6. Without 
this command, you’d see a small shape representing the turtle at the 
front of the line being drawn. You then call draw_triangle() to draw the 
triangle 7, passing in the desired coordinates as arguments. The call to 
mainloop() 8 keeps the tkinter window open after the triangle has been 
drawn. (tkinter is Python’s default GUI library.)
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Figure 1-5 shows the output of this simple program.

Figure 1-5: The output of a simple turtle program

You now have everything you need for the project. Let’s draw some 
flakes!

Requirements
In this project, you’ll use the Python turtle module to draw the snowflake.

The Code
To draw the Koch snowflake, define a recursive function, drawKochSF(). This 
function computes P1, P2, and P3 in terms of A and B from Figure 1-2 and 
then recursively calls itself to perform the same calculation for smaller 
and smaller line segments until it reaches the smallest base case. Then 
it draws the flakes using turtle. For the full project code, skip ahead to 
“The Complete Code” on page 16. The code is also available in the book’s 
GitHub repository at https://​github​.com/​mkvenkit/​pp2e/​blob/​main/​koch/​koch​.py.

Calculating the Points
Begin the drawKochSF() function by calculating the coordinates for all the 
points needed to draw the basic flake pattern shown in Figure 1-2.
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def drawKochSF(x1, y1, x2, y2, t):
    d = math.sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2))
    r = d/3.0
    h = r*math.sqrt(3)/2.0
    p3 = ((x1 + 2*x2)/3.0, (y1 + 2*y2)/3.0)
    p1 = ((2*x1 + x2)/3.0, (2*y1 + y2)/3.0)
    c = (0.5*(x1+x2), 0.5*(y1+y2))
    n = ((y1-y2)/d, (x2-x1)/d)
    p2 = (c[0]+h*n[0], c[1]+h*n[1])

You define drawKochSF(), passing in the x- and y-coordinates for the end-
points of a line segment AB, which forms the basis for one of the sides of 
the snowflake, as shown in Figure 1-4. You also pass in the turtle object t, 
which you use for the actual drawing. Then you compute all the parameters 
shown in Figure 1-2, as discussed in the “Computing the Snowflake” sec-
tion, starting with d, the distance from A to B. Dividing d by 3 gives you r, 
the length of each of the four line segments that makes up a flake. You use 
r to find h, the height of the “cone” at the heart of the flake.

You calculate the rest of the parameters as tuples containing an x- and a 
y-coordinate. The p3 and p1 tuples describe the two points at the base of the 
cone portion of the flake. Point c is the midpoint of p1 and p3, and n is the 
unit vector perpendicular to line AB. Along with h, they help you calculate 
p2, the apex of the flake’s cone.

Recursing
The next part of the drawKochSF() function uses recursion to break down the 
first-level flake into smaller and smaller versions of itself.

  1 if d > 10:
        # flake #1
      2 drawKochSF(x1, y1, p1[0], p1[1], t)
        # flake #2
        drawKochSF(p1[0], p1[1], p2[0], p2[1], t)
        # flake #3
        drawKochSF(p2[0], p2[1], p3[0], p3[1], t)
        # flake #4
        drawKochSF(p3[0], p3[1], x2, y2, t)

First you check for the recursion-stopping criteria 1. If d, the length of 
segment AB, is greater than 10 pixels, you continue the recursion. You do 
this by calling the drawKochSF() function again—four times! With each call, 
you pass in a different set of arguments corresponding to the coordinates 
for one of the four line segments that make up a flake, which you calculated 
at the start of the function. At 2, for example, you call drawKochSF() for the 
segment AB1. The other function calls are for segments P1P2, P2P3, and P3B. 
Within each of these recursive calls, you’ll perform a new set of calculations 
based on the new values for points A and B, and if d is still greater than 
10 pixels, you’ll make another four recursive calls to drawKochSF(), and so on.
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Drawing a Flake
Now let’s look at what happens if segment AB is less than 10 pixels. This is 
the base case for the recursive algorithm. Since you’re below the threshold, 
you aren’t going to recurse. Instead, you actually draw the four line seg-
ments that make up a single flake pattern and return from the function. 
You use the up(), down(), and setpos() methods from the turtle module, 
which you learned about in the “Drawing with turtle Graphics” section.

    else:
        # draw cone
        t.up()
      1 t.setpos(p1[0], p1[1])
        t.down()
        t.setpos(p2[0], p2[1])
        t.setpos(p3[0], p3[1])
        # draw sides
        t.up()
      2 t.setpos(x1, y1)
        t.down()
        t.setpos(p1[0], p1[1])
        t.up()
      3 t.setpos(p3[0], p3[1])
        t.down()
        t.setpos(x2, y2)

First you draw the cone formed by points p1, p2, and p3 1. Then you 
draw lines AB1 2 and P3B 3. Since you already performed all the required 
calculations at the start of the function, drawing is simply a matter of pass-
ing the appropriate coordinates to the setpos() method.

Writing the main() Function
The main() function sets up a turtle object and calls drawKochSF().

def main():
    print('Drawing the Koch Snowflake...')

    t = turtle.Turtle()
    t.hideturtle()

    # draw
    try:
      1 drawKochSF(-100, 0, 100, 0, t)
      2 drawKochSF(0, -173.2, -100, 0, t)
      3 drawKochSF(100, 0, 0, -173.2, t)
  4 except:
         print("Exception, exiting.")
         exit(0)

    # wait for user to click on screen to exit
  5 turtle.Screen().exitonclick()
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In Figure 1-4, you saw how you were going to draw three of the snow-
flakes to get a hexagonally symmetric image as the final output. You do this 
by making three calls to drawKochSF(). The coordinates used for points A and 
B are (-100, 0), (100, 0) for the first snowflake 1, (0, -173.2), (-100, 0) 
for the second 2, and (100, 0), (0, -173.2) for the third 3. Notice that 
these are the same coordinates you used earlier to draw a triangle in your 
test_turtle.py program. Try to work out the coordinates for yourself. (Hint: 
–173.2 ≈ 100   3.)

The drawKochSF() calls are enclosed in a Python try block to catch 
any exceptions that happen during drawing. For example, if you close 
the window while the drawing is still in process, an exception is thrown. 
You catch it in the except block 4, where you print a message and 
exit the program. If you allow the drawing to complete, you’ll get to 
turtle.Screen().exitonclick() 5, which will wait until you close the window 
by clicking anywhere inside it.

Running the Snowflake Code
Run the code in a terminal as follows. Figure 1-6 shows the output.

$ python koch.py

Figure 1-6: The Koch snowflake output

There’s your beautiful snowflake!
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Summary
In this chapter, you learned the basics of recursive functions and algo-
rithms. You also learned how to draw simple graphics with Python’s turtle 
module. You put these concepts together to create a nice drawing of an 
interesting fractal called the Koch snowflake.

Experiments!
Now that you have completed one fractal drawing, let’s look at another 
interesting one called the Sierpiński triangle, named after the Polish math-
ematician Wacław Sierpiński. Figure 1-7 shows what it looks like.

Figure 1-7: The Sierpiński triangle

Try drawing the Sierpiński triangle with turtle graphics. You can use 
a recursive algorithm like you did to draw the Koch snowflake. If you look 
at Figure 1-7, you’ll see that the large triangle is divided into three smaller 
triangles, with an upside-down triangular hole in the middle. Each of the 
three smaller triangles is itself divided into another three triangles plus a 
hole in the middle, and so on. That gives you a hint on how to split up your 
recursion.

(The solution to this problem is in the GitHub repository for the book 
https://github.com/mkvenkit/pp2e/blob/main/koch/koch.py)
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The Complete Code
Here’s the complete code listing for this project:

"""
koch.py

A program that draws the Koch snowflake.

Author: Mahesh Venkitachalam
"""

import turtle
import math

# draw the recursive Koch snowflake
def drawKochSF(x1, y1, x2, y2, t):
    d = math.sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2))
    r = d/3.0
    h = r*math.sqrt(3)/2.0
    p3 = ((x1 + 2*x2)/3.0, (y1 + 2*y2)/3.0)
    p1 = ((2*x1 + x2)/3.0, (2*y1 + y2)/3.0)
    c = (0.5*(x1+x2), 0.5*(y1+y2))
    n = ((y1-y2)/d, (x2-x1)/d)
    p2 = (c[0]+h*n[0], c[1]+h*n[1])
    if d > 10:
        # flake #1
        drawKochSF(x1, y1, p1[0], p1[1], t)
        # flake #2
        drawKochSF(p1[0], p1[1], p2[0], p2[1], t)
        # flake #3
        drawKochSF(p2[0], p2[1], p3[0], p3[1], t)
        # flake #4
        drawKochSF(p3[0], p3[1], x2, y2, t)
    else:
        # draw cone
        t.up()
        t.setpos(p1[0], p1[1])
        t.down()
        t.setpos(p2[0], p2[1])
        t.setpos(p3[0], p3[1])
        # draw sides
        t.up()
        t.setpos(x1, y1)
        t.down()
        t.setpos(p1[0], p1[1])
        t.up()
        t.setpos(p3[0], p3[1])
        t.down()
        t.setpos(x2, y2)

# main() function
def main():
    print('Drawing the Koch Snowflake...')
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    t = turtle.Turtle()
    t.hideturtle()

    # draw
    try:
        drawKochSF(-100, 0, 100, 0, t)
        drawKochSF(0, -173.2, -100, 0, t)
        drawKochSF(100, 0, 0, -173.2, t)
    except:
        print("Exception, exiting.")
        exit(0)

    # wait for user to click on screen to exit
    turtle.Screen().exitonclick()

# call main
if __name__ == '__main__':
    main()


