
2
V A R I A B L E S A N D

S I M P L E D A T A T Y P E S

In this chapter you’ll learn about the dif-
ferent kinds of data you can work with in

your Python programs. You’ll also learn
how to use variables to represent data in your

programs.

What Really Happens When You Run hello_world.py
Let’s take a closer look at what Python does when you run hello_world.py. As
it turns out, Python does a fair amount of work, even when it runs a simple
program:

hello_world.py print("Hello Python world!")

When you run this code, you should see the following output:

Hello Python world!

502703book.indb 15502703book.indb 15 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

16 Chapter 2

When you run the file hello_world.py, the ending .py indicates that the
file is a Python program. Your editor then runs the file through the Python
interpreter, which reads through the program and determines what each word
in the program means. For example, when the interpreter sees the word
print followed by parentheses, it prints to the screen whatever is inside the
parentheses.

As you write your programs, your editor highlights different parts of
your program in different ways. For example, it recognizes that print() is
the name of a function and displays that word in one color. It recognizes
that "Hello Python world!" is not Python code, and displays that phrase in a
different color. This feature is called syntax highlighting and is quite useful
as you start to write your own programs.

Variables
Let’s try using a variable in hello_world.py. Add a new line at the beginning
of the file, and modify the second line:

hello_world.py message = "Hello Python world!"
print(message)

Run this program to see what happens. You should see the same output
you saw previously:

Hello Python world!

We’ve added a variable named message. Every variable is connected to a
value, which is the information associated with that variable. In this case
the value is the "Hello Python world!" text.

Adding a variable makes a little more work for the Python interpreter.
When it processes the first line, it associates the variable message with the
"Hello Python world!" text. When it reaches the second line, it prints the
value associated with message to the screen.

Let’s expand on this program by modifying hello_world.py to print a sec-
ond message. Add a blank line to hello_world.py, and then add two new lines
of code:

message = "Hello Python world!"
print(message)

message = "Hello Python Crash Course world!"
print(message)

Now when you run hello_world.py, you should see two lines of output:

Hello Python world!
Hello Python Crash Course world!

You can change the value of a variable in your program at any time,
and Python will always keep track of its current value.

502703book.indb 16502703book.indb 16 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 17

Naming and Using Variables
When you’re using variables in Python, you need to adhere to a few rules
and guidelines. Breaking some of these rules will cause errors; other guide-
lines just help you write code that’s easier to read and understand. Be sure
to keep the following rules in mind when working with variables:

•	 Variable names can contain only letters, numbers, and underscores.
They can start with a letter or an underscore, but not with a number.
For instance, you can call a variable message_1 but not 1_message.

•	 Spaces are not allowed in variable names, but underscores can be used
to separate words in variable names. For example, greeting_message works
but greeting message will cause errors.

•	 Avoid using Python keywords and function names as variable names.
For example, do not use the word print as a variable name; Python
has reserved it for a particular programmatic purpose. (See “Python
Keywords and Built-in Functions” on page 466.)

•	 Variable names should be short but descriptive. For example, name is
better than n, student_name is better than s_n, and name_length is better
than length_of_persons_name.

•	 Be careful when using the lowercase letter l and the uppercase letter O
because they could be confused with the numbers 1 and 0.

It can take some practice to learn how to create good variable names,
especially as your programs become more interesting and complicated.
As you write more programs and start to read through other people’s code,
you’ll get better at coming up with meaningful names.

N O T E The Python variables you’re using at this point should be lowercase. You won’t get
errors if you use uppercase letters, but uppercase letters in variable names have spe-
cial meanings that we’ll discuss in later chapters.

Avoiding Name Errors When Using Variables
Every programmer makes mistakes, and most make mistakes every day.
Although good programmers might create errors, they also know how to
respond to those errors efficiently. Let’s look at an error you’re likely to
make early on and learn how to fix it.

We’ll write some code that generates an error on purpose. Enter the fol-
lowing code, including the misspelled word mesage, which is shown in bold:

message = "Hello Python Crash Course reader!"
print(mesage)

When an error occurs in your program, the Python interpreter does its
best to help you figure out where the problem is. The interpreter provides
a traceback when a program cannot run successfully. A traceback is a record
of where the interpreter ran into trouble when trying to execute your code.

502703book.indb 17502703book.indb 17 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

18 Chapter 2

Here’s an example of the traceback that Python provides after you’ve acci-
dentally misspelled a variable’s name:

Traceback (most recent call last):
1 File "hello_world.py", line 2, in <module>
2 print(mesage)
 ^^^^^^
3 NameError: name 'mesage' is not defined. Did you mean: 'message'?

The output reports that an error occurs in line 2 of the file hello_world.py 1.
The interpreter shows this line 2 to help us spot the error quickly and
tells us what kind of error it found 3. In this case it found a name error
and reports that the variable being printed, mesage, has not been defined.
Python can’t identify the variable name provided. A name error usually
means we either forgot to set a variable’s value before using it, or we made a
spelling mistake when entering the variable’s name. If Python finds a vari-
able name that’s similar to the one it doesn’t recognize, it will ask if that’s
the name you meant to use.

In this example we omitted the letter s in the variable name message in
the second line. The Python interpreter doesn’t spellcheck your code, but
it does ensure that variable names are spelled consistently. For example,
watch what happens when we spell message incorrectly in the line that
defines the variable:

mesage = "Hello Python Crash Course reader!"
print(mesage)

In this case, the program runs successfully!

Hello Python Crash Course reader!

The variable names match, so Python sees no issue. Programming lan-
guages are strict, but they disregard good and bad spelling. As a result, you
don’t need to consider English spelling and grammar rules when you’re try-
ing to create variable names and writing code.

Many programming errors are simple, single-character typos in one
line of a program. If you find yourself spending a long time searching for
one of these errors, know that you’re in good company. Many experienced
and talented programmers spend hours hunting down these kinds of tiny
errors. Try to laugh about it and move on, knowing it will happen frequently
throughout your programming life.

Variables Are Labels
Variables are often described as boxes you can store values in. This idea can
be helpful the first few times you use a variable, but it isn’t an accurate way
to describe how variables are represented internally in Python. It’s much
better to think of variables as labels that you can assign to values. You can
also say that a variable references a certain value.

502703book.indb 18502703book.indb 18 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 19

This distinction probably won’t matter much in your initial programs,
but it’s worth learning earlier rather than later. At some point, you’ll see
unexpected behavior from a variable, and an accurate understanding of
how variables work will help you identify what’s happening in your code.

N O T E The best way to understand new programming concepts is to try using them in your
programs. If you get stuck while working on an exercise in this book, try doing some-
thing else for a while. If you’re still stuck, review the relevant part of that chapter. If
you still need help, see the suggestions in Appendix C.

T RY IT YOURSEL F

Write a separate program to accomplish each of these exercises. Save each pro-
gram with a filename that follows standard Python conventions, using lowercase
letters and underscores, such as simple_message.py and simple_messages.py.

2-1. Simple Message: Assign a message to a variable, and then print that
message.

2-2. Simple Messages: Assign a message to a variable, and print that message.
Then change the value of the variable to a new message, and print the new
message.

Strings
Because most programs define and gather some sort of data and then do
something useful with it, it helps to classify different types of data. The first
data type we’ll look at is the string. Strings are quite simple at first glance,
but you can use them in many different ways.

A string is a series of characters. Anything inside quotes is considered
a string in Python, and you can use single or double quotes around your
strings like this:

"This is a string."
'This is also a string.'

This flexibility allows you to use quotes and apostrophes within your
strings:

'I told my friend, "Python is my favorite language!"'
"The language 'Python' is named after Monty Python, not the snake."
"One of Python's strengths is its diverse and supportive community."

Let’s explore some of the ways you can use strings.

502703book.indb 19502703book.indb 19 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

20 Chapter 2

Changing Case in a String with Methods
One of the simplest tasks you can do with strings is change the case of the
words in a string. Look at the following code, and try to determine what’s
happening:

name.py name = "ada lovelace"
print(name.title())

Save this file as name.py and then run it. You should see this output:

Ada Lovelace

In this example, the variable name refers to the lowercase string "ada
lovelace". The method title() appears after the variable in the print() call. A
method is an action that Python can perform on a piece of data. The dot (.)
after name in name.title() tells Python to make the title() method act on
the variable name. Every method is followed by a set of parentheses, because
methods often need additional information to do their work. That informa-
tion is provided inside the parentheses. The title() function doesn’t need
any additional information, so its parentheses are empty.

The title() method changes each word to title case, where each word
begins with a capital letter. This is useful because you’ll often want to think
of a name as a piece of information. For example, you might want your pro-
gram to recognize the input values Ada, ADA, and ada as the same name, and
display all of them as Ada.

Several other useful methods are available for dealing with case as well.
For example, you can change a string to all uppercase or all lowercase let-
ters like this:

name = "Ada Lovelace"
print(name.upper())
print(name.lower())

This will display the following:

ADA LOVELACE
ada lovelace

The lower() method is particularly useful for storing data. You typi-
cally won’t want to trust the capitalization that your users provide, so you’ll
convert strings to lowercase before storing them. Then when you want to
display the information, you’ll use the case that makes the most sense for
each string.

Using Variables in Strings
In some situations, you’ll want to use a variable’s value inside a string. For
example, you might want to use two variables to represent a first name and

502703book.indb 20502703book.indb 20 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 21

a last name, respectively, and then combine those values to display some-
one’s full name:

full_name.py first_name = "ada"
last_name = "lovelace"
1 full_name = f"{first_name} {last_name}"
print(full_name)

To insert a variable’s value into a string, place the letter f immediately
before the opening quotation mark 1. Put braces around the name or
names of any variable you want to use inside the string. Python will replace
each variable with its value when the string is displayed.

These strings are called f-strings. The f is for format, because Python
formats the string by replacing the name of any variable in braces with its
value. The output from the previous code is:

ada lovelace

You can do a lot with f-strings. For example, you can use f-strings to
compose complete messages using the information associated with a vari-
able, as shown here:

first_name = "ada"
last_name = "lovelace"
full_name = f"{first_name} {last_name}"
1 print(f"Hello, {full_name.title()}!")

The full name is used in a sentence that greets the user 1, and the
title() method changes the name to title case. This code returns a simple
but nicely formatted greeting:

Hello, Ada Lovelace!

You can also use f-strings to compose a message, and then assign the
entire message to a variable:

first_name = "ada"
last_name = "lovelace"
full_name = f"{first_name} {last_name}"
1 message = f"Hello, {full_name.title()}!"
2 print(message)

This code displays the message Hello, Ada Lovelace! as well, but by
assigning the message to a variable 1 we make the final print() call much
simpler 2.

Adding Whitespace to Strings with Tabs or Newlines
In programming, whitespace refers to any nonprinting characters, such as
spaces, tabs, and end-of-line symbols. You can use whitespace to organize
your output so it’s easier for users to read.

502703book.indb 21502703book.indb 21 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

22 Chapter 2

To add a tab to your text, use the character combination \t:

>>> print("Python")
Python
>>> print("\tPython")
 Python

To add a newline in a string, use the character combination \n:

>>> print("Languages:\nPython\nC\nJavaScript")
Languages:
Python
C
JavaScript

You can also combine tabs and newlines in a single string. The string
"\n\t" tells Python to move to a new line, and start the next line with a tab.
The following example shows how you can use a one-line string to generate
four lines of output:

>>> print("Languages:\n\tPython\n\tC\n\tJavaScript")
Languages:
 Python
 C
 JavaScript

Newlines and tabs will be very useful in the next two chapters, when
you start to produce many lines of output from just a few lines of code.

Stripping Whitespace
Extra whitespace can be confusing in your programs. To programmers,
'python' and 'python ' look pretty much the same. But to a program, they
are two different strings. Python detects the extra space in 'python ' and
considers it significant unless you tell it otherwise.

It’s important to think about whitespace, because often you’ll want to
compare two strings to determine whether they are the same. For example,
one important instance might involve checking people’s usernames when
they log in to a website. Extra whitespace can be confusing in much sim-
pler situations as well. Fortunately, Python makes it easy to eliminate extra
whitespace from data that people enter.

Python can look for extra whitespace on the right and left sides of a
string. To ensure that no whitespace exists at the right side of a string, use
the rstrip() method:

1 >>> favorite_language = 'python '
2 >>> favorite_language
'python '
3 >>> favorite_language.rstrip()
'python'
4 >>> favorite_language
'python '

502703book.indb 22502703book.indb 22 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 23

The value associated with favorite_language 1 contains extra whitespace
at the end of the string. When you ask Python for this value in a termi-
nal session, you can see the space at the end of the value 2. When the
rstrip() method acts on the variable favorite_language 3, this extra space is
removed. However, it is only removed temporarily. If you ask for the value
of favorite_language again, the string looks the same as when it was entered,
including the extra whitespace 4.

To remove the whitespace from the string permanently, you have to
associate the stripped value with the variable name:

>>> favorite_language = 'python '
1 >>> favorite_language = favorite_language.rstrip()
>>> favorite_language
'python'

To remove the whitespace from the string, you strip the whitespace
from the right side of the string and then associate this new value with
the original variable 1. Changing a variable’s value is done often in pro-
gramming. This is how a variable’s value can be updated as a program is
executed or in response to user input.

You can also strip whitespace from the left side of a string using the
lstrip() method, or from both sides at once using strip():

1 >>> favorite_language = ' python '
2 >>> favorite_language.rstrip()
' python'
3 >>> favorite_language.lstrip()
'python '
4 >>> favorite_language.strip()
'python'

In this example, we start with a value that has whitespace at the begin-
ning and the end 1. We then remove the extra space from the right side 2,
from the left side 3, and from both sides 4. Experimenting with these strip-
ping functions can help you become familiar with manipulating strings. In
the real world, these stripping functions are used most often to clean up
user input before it’s stored in a program.

Removing Prefixes
When working with strings, another common task is to remove a prefix.
Consider a URL with the common prefix https://. We want to remove this
prefix, so we can focus on just the part of the URL that users need to enter
into an address bar. Here’s how to do that:

>>> nostarch_url = 'https://nostarch.com'
>>> nostarch_url.removeprefix('https://')
'nostarch.com'

502703book.indb 23502703book.indb 23 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

24 Chapter 2

Enter the name of the variable followed by a dot, and then the method
removeprefix(). Inside the parentheses, enter the prefix you want to remove
from the original string.

Like the methods for removing whitespace, removeprefix() leaves the
original string unchanged. If you want to keep the new value with the pre-
fix removed, either reassign it to the original variable or assign it to a new
variable:

>>> simple_url = nostarch_url.removeprefix('https://')

When you see a URL in an address bar and the https:// part isn’t shown,
the browser is probably using a method like removeprefix() behind the
scenes.

Avoiding Syntax Errors with Strings
One kind of error that you might see with some regularity is a syntax error.
A syntax error occurs when Python doesn’t recognize a section of your pro-
gram as valid Python code. For example, if you use an apostrophe within
single quotes, you’ll produce an error. This happens because Python inter-
prets everything between the first single quote and the apostrophe as a
string. It then tries to interpret the rest of the text as Python code, which
causes errors.

Here’s how to use single and double quotes correctly. Save this program
as apostrophe.py and then run it:

apostrophe.py message = "One of Python's strengths is its diverse community."
print(message)

The apostrophe appears inside a set of double quotes, so the Python
interpreter has no trouble reading the string correctly:

One of Python's strengths is its diverse community.

However, if you use single quotes, Python can’t identify where the string
should end:

message = 'One of Python's strengths is its diverse community.'
print(message)

You’ll see the following output:

 File "apostrophe.py", line 1
 message = 'One of Python's strengths is its diverse community.'
 1 ^
SyntaxError: unterminated string literal (detected at line 1)

In the output you can see that the error occurs right after the final single
quote 1. This syntax error indicates that the interpreter doesn’t recognize

502703book.indb 24502703book.indb 24 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 25

something in the code as valid Python code, and it thinks the problem might
be a string that’s not quoted correctly. Errors can come from a variety of
sources, and I’ll point out some common ones as they arise. You might see
syntax errors often as you learn to write proper Python code. Syntax errors
are also the least specific kind of error, so they can be difficult and frustrat-
ing to identify and correct. If you get stuck on a particularly stubborn error,
see the suggestions in Appendix C.

N O T E Your editor’s syntax highlighting feature should help you spot some syntax errors
quickly as you write your programs. If you see Python code highlighted as if it’s
English or English highlighted as if it’s Python code, you probably have a mismatched
quotation mark somewhere in your file.

T RY IT YOURSEL F

Save each of the following exercises as a separate file, with a name like name
_cases.py. If you get stuck, take a break or see the suggestions in Appendix C.

2-3. Personal Message: Use a variable to represent a person’s name, and print
a message to that person. Your message should be simple, such as, “Hello Eric,
would you like to learn some Python today?”

2-4. Name Cases: Use a variable to represent a person’s name, and then print
that person’s name in lowercase, uppercase, and title case.

2-5. Famous Quote: Find a quote from a famous person you admire. Print the
quote and the name of its author. Your output should look something like the
following, including the quotation marks:

Albert Einstein once said, “A person who never made a mistake never
tried anything new.”

2-6. Famous Quote 2: Repeat Exercise 2-5, but this time, represent the famous
person’s name using a variable called famous_person. Then compose your mes-
sage and represent it with a new variable called message. Print your message.

2-7. Stripping Names: Use a variable to represent a person’s name, and
include some whitespace characters at the beginning and end of the name.
Make sure you use each character combination, "\t" and "\n", at least once.

Print the name once, so the whitespace around the name is displayed.
Then print the name using each of the three stripping functions, lstrip(),
rstrip(), and strip().

2-8. File Extensions: Python has a removesuffix() method that works exactly
like removeprefix(). Assign the value 'python_notes.txt' to a variable called
filename. Then use the removesuffix() method to display the filename without
the file extension, like some file browsers do.

502703book.indb 25502703book.indb 25 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

26 Chapter 2

Numbers
Numbers are used quite often in programming to keep score in games,
represent data in visualizations, store information in web applications, and
so on. Python treats numbers in several different ways, depending on how
they’re being used. Let’s first look at how Python manages integers, because
they’re the simplest to work with.

Integers
You can add (+), subtract (-), multiply (*), and divide (/) integers in Python.

>>> 2 + 3
5
>>> 3 - 2
1
>>> 2 * 3
6
>>> 3 / 2
1.5

In a terminal session, Python simply returns the result of the operation.
Python uses two multiplication symbols to represent exponents:

>>> 3 ** 2
9
>>> 3 ** 3
27
>>> 10 ** 6
1000000

Python supports the order of operations too, so you can use multiple
operations in one expression. You can also use parentheses to modify the
order of operations so Python can evaluate your expression in the order
you specify. For example:

>>> 2 + 3*4
14
>>> (2 + 3) * 4
20

The spacing in these examples has no effect on how Python evaluates
the expressions; it simply helps you more quickly spot the operations that
have priority when you’re reading through the code.

Floats
Python calls any number with a decimal point a float. This term is used in
most programming languages, and it refers to the fact that a decimal point

502703book.indb 26502703book.indb 26 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 27

can appear at any position in a number. Every programming language must
be carefully designed to properly manage decimal numbers so numbers
behave appropriately, no matter where the decimal point appears.

For the most part, you can use floats without worrying about how they
behave. Simply enter the numbers you want to use, and Python will most
likely do what you expect:

>>> 0.1 + 0.1
0.2
>>> 0.2 + 0.2
0.4
>>> 2 * 0.1
0.2
>>> 2 * 0.2
0.4

However, be aware that you can sometimes get an arbitrary number of
decimal places in your answer:

>>> 0.2 + 0.1
0.30000000000000004
>>> 3 * 0.1
0.30000000000000004

This happens in all languages and is of little concern. Python tries to
find a way to represent the result as precisely as possible, which is sometimes
difficult given how computers have to represent numbers internally. Just
ignore the extra decimal places for now; you’ll learn ways to deal with the
extra places when you need to in the projects in Part II.

Integers and Floats
When you divide any two numbers, even if they are integers that result in a
whole number, you’ll always get a float:

>>> 4/2
2.0

If you mix an integer and a float in any other operation, you’ll get a
float as well:

>>> 1 + 2.0
3.0
>>> 2 * 3.0
6.0
>>> 3.0 ** 2
9.0

502703book.indb 27502703book.indb 27 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

28 Chapter 2

Python defaults to a float in any operation that uses a float, even if the
output is a whole number.

Underscores in Numbers
When you’re writing long numbers, you can group digits using underscores
to make large numbers more readable:

>>> universe_age = 14_000_000_000

When you print a number that was defined using underscores, Python
prints only the digits:

>>> print(universe_age)
14000000000

Python ignores the underscores when storing these kinds of values.
Even if you don’t group the digits in threes, the value will still be unaf-
fected. To Python, 1000 is the same as 1_000, which is the same as 10_00. This
feature works for both integers and floats.

Multiple Assignment
You can assign values to more than one variable using just a single line of
code. This can help shorten your programs and make them easier to read;
you’ll use this technique most often when initializing a set of numbers.

For example, here’s how you can initialize the variables x, y, and z to zero:

>>> x, y, z = 0, 0, 0

You need to separate the variable names with commas, and do the same
with the values, and Python will assign each value to its respective variable.
As long as the number of values matches the number of variables, Python
will match them up correctly.

Constants
A constant is a variable whose value stays the same throughout the life of a
program. Python doesn’t have built-in constant types, but Python program-
mers use all capital letters to indicate a variable should be treated as a con-
stant and never be changed:

MAX_CONNECTIONS = 5000

When you want to treat a variable as a constant in your code, write the
name of the variable in all capital letters.

502703book.indb 28502703book.indb 28 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 29

T RY IT YOURSEL F

2-9. Number Eight: Write addition, subtraction, multiplication, and division
operations that each result in the number 8. Be sure to enclose your operations
in print() calls to see the results. You should create four lines that look like this:

print(5+3)

Your output should be four lines, with the number 8 appearing once on
each line.

2-10. Favorite Number: Use a variable to represent your favorite number. Then,
using that variable, create a message that reveals your favorite number. Print
that message.

Comments
Comments are an extremely useful feature in most programming lan-
guages. Everything you’ve written in your programs so far is Python code.
As your programs become longer and more complicated, you should add
notes within your programs that describe your overall approach to the
problem you’re solving. A comment allows you to write notes in your spoken
language, within your programs.

How Do You Write Comments?
In Python, the hash mark (#) indicates a comment. Anything following a
hash mark in your code is ignored by the Python interpreter. For example:

comment.py # Say hello to everyone.
print("Hello Python people!")

Python ignores the first line and executes the second line.

Hello Python people!

What Kinds of Comments Should You Write?
The main reason to write comments is to explain what your code is sup-
posed to do and how you are making it work. When you’re in the middle
of working on a project, you understand how all of the pieces fit together.
But when you return to a project after some time away, you’ll likely have

502703book.indb 29502703book.indb 29 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

30 Chapter 2

forgotten some of the details. You can always study your code for a while
and figure out how segments were supposed to work, but writing good com-
ments can save you time by summarizing your overall approach clearly.

If you want to become a professional programmer or collaborate with
other programmers, you should write meaningful comments. Today, most
software is written collaboratively, whether by a group of employees at one
company or a group of people working together on an open source project.
Skilled programmers expect to see comments in code, so it’s best to start
adding descriptive comments to your programs now. Writing clear, concise
comments in your code is one of the most beneficial habits you can form as
a new programmer.

When you’re deciding whether to write a comment, ask yourself if you
had to consider several approaches before coming up with a reasonable way
to make something work; if so, write a comment about your solution. It’s
much easier to delete extra comments later than to go back and write com-
ments for a sparsely commented program. From now on, I’ll use comments
in examples throughout this book to help explain sections of code.

T RY IT YOURSEL F

2-11. Adding Comments: Choose two of the programs you’ve written, and
add at least one comment to each. If you don’t have anything specific to write
because your programs are too simple at this point, just add your name and the
current date at the top of each program file. Then write one sentence describing
what the program does.

The Zen of Python
Experienced Python programmers will encourage you to avoid complexity
and aim for simplicity whenever possible. The Python community’s philoso-
phy is contained in “The Zen of Python” by Tim Peters. You can access this
brief set of principles for writing good Python code by entering import this
into your interpreter. I won’t reproduce the entire “Zen of Python” here, but
I’ll share a few lines to help you understand why they should be important
to you as a beginning Python programmer.

>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.

Python programmers embrace the notion that code can be beautiful
and elegant. In programming, people solve problems. Programmers have
always respected well-designed, efficient, and even beautiful solutions to
problems. As you learn more about Python and use it to write more code,

502703book.indb 30502703book.indb 30 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

Variables and Simple Data Types 31

someone might look over your shoulder one day and say, “Wow, that’s some
beautiful code!”

Simple is better than complex.

If you have a choice between a simple and a complex solution, and both
work, use the simple solution. Your code will be easier to maintain, and it
will be easier for you and others to build on that code later on.

Complex is better than complicated.

Real life is messy, and sometimes a simple solution to a problem is unat-
tainable. In that case, use the simplest solution that works.

Readability counts.

Even when your code is complex, aim to make it readable. When you’re
working on a project that involves complex coding, focus on writing infor-
mative comments for that code.

There should be one-- and preferably only one --obvious way to do it.

If two Python programmers are asked to solve the same problem, they
should come up with fairly compatible solutions. This is not to say there’s
no room for creativity in programming. On the contrary, there is plenty of
room for creativity! However, much of programming consists of using small,
common approaches to simple situations within a larger, more creative
project. The nuts and bolts of your programs should make sense to other
Python programmers.

Now is better than never.

You could spend the rest of your life learning all the intricacies of
Python and of programming in general, but then you’d never complete any
projects. Don’t try to write perfect code; write code that works, and then
decide whether to improve your code for that project or move on to some-
thing new.

As you continue to the next chapter and start digging into more
involved topics, try to keep this philosophy of simplicity and clarity in mind.
Experienced programmers will respect your code more and will be happy to
give you feedback and collaborate with you on interesting projects.

T RY IT YOURSEL F

2-12. Zen of Python: Enter import this into a Python terminal session and skim
through the additional principles.

502703book.indb 31502703book.indb 31 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

32 Chapter 2

Summary
In this chapter you learned how to work with variables. You learned to use
descriptive variable names and resolve name errors and syntax errors when
they arise. You learned what strings are and how to display them using low-
ercase, uppercase, and title case. You started using whitespace to organize
output neatly, and you learned how to remove unneeded elements from a
string. You started working with integers and floats, and you learned some
of the ways you can work with numerical data. You also learned to write
explanatory comments to make your code easier for you and others to read.
Finally, you read about the philosophy of keeping your code as simple as
possible, whenever possible.

In Chapter 3, you’ll learn how to store collections of information in
data structures called lists. You’ll also learn how to work through a list,
manipulating any information in that list.

502703book.indb 32502703book.indb 32 8/9/22 2:14 PM8/9/22 2:14 PM

Python Crash Course, 3rd Edition (Sample Chapter) © 8/17/22 by Eric Matthes

