
12	 chapter 2

sequence 
beams

Sequence beams are the white studless beams that link blocks 
together onscreen. The order of blocks along the sequence beam 
controls the order in which they execute: The first block connected 
to the start symbol executes first; then (usually when the first block 
is completely finished) the next block along that sequence beam 
executes; then the third one, and so on. Sequence beams are just a 
visual way to represent the program flow, not unlike the arrows in a 
flowchart, as you can see in Figure 2-4.

branching and 
sequences

Like a flowchart, these “execution sequences” can branch, but they 
branch in two very different ways. The first is when a choice has 
to be made: Should the execution follow this path, or that one? 
In a text language this is done with something like an if-then or a 
switch-case command, while in NXT-G the Switch block takes over 
this role (more on that in a second). 

And NXT-G offers another very different, very powerful way 
to make the execution proceed: You could have it go down two dif-
ferent branches simultaneously. This is parallel programming: using 
two or more parallel sequences to accomplish two things at once. 

In NXT-G, parallel programming is as natural as breathing. 
Once you have laid down one sequence (or even a portion of that 
sequence), you can start a second sequence by dropping a block 
somewhere below it, not connected to the existing sequence beam 

(actually, it could be below it, above it, or anywhere else, as long as 
it doesn’t link up to the sequence beam). Such an “orphan” block is 
normally ignored by NXT-G and not incorporated into your finished 
program. 

Now, to branch a sequence beam and link in this first block 
of a parallel sequence, hover the arrow cursor over the existing 
sequence beam at the point you want it to branch, and press and 
hold the shift key. You can now click and drag out a new branch of 
the sequence beam to the start of your orphan block, and that’s 
it—you’ve started a new parallel sequence. Any blocks you drop 
behind this newly connected block will obediently join the rank and 
file of the second sequence. You can branch a new sequence from 
anywhere: the start symbol, midway along a sequence beam, or 
even within a Loop or Switch (although that’s a bit trickier). Fig-
ure 2‑5 shows a sample three-pane sequence.

Play a sound

Get a
number

Is it equal
to 0?

Yes

No

Continue

Figure 2-4: A simple flowchart for the program shown in Figure 2-3

Figure 2-5: A three-pane sequence of creating a parallel sequence beam

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



	 the grammar of nxt-g	 13

blocks and 
structures

Blocks and structures are the real workhorses of NXT-G. They are 
specialized chunks of code that do something specific, such as play 
a sound, control a motor, get the current reading from a sensor, 
and so on. 

Almost any time you place a block or a structure, you need 
to set up its various limits and conditions from the configuration 
panel, such as what port a sensor is connected to, how long to run a 
motor, and so on—and there can be a lot of things to configure. 

blocks

Of the two, blocks are the simplest; they’re just one-square icons 
that accomplish something specific. Program execution usually halts 
while a block is executing; that is, the next block on the sequence 
doesn’t start doing its thing until the previous “upstream” block has 
completely finished. But that’s not always the case: Some blocks 
can start actions and then let the sequence continue executing, 
even while these actions are still taking place. A good example of 
such a block is the Sound block, which enables you to check or 
uncheck the box next to the words Wait for completion.

cloning blocks

Re-editing the configuration panel every time you drop a new block 
gets old fast. Every block has only one default state when dropped 
from the palette, but that’s not much help if you want to repeat a 
block that is set with something other than the default state. 

To repeat an existing block you can clone it. If you alt-drag 
an existing block (option-drag on the Mac), the environment makes 
a “clone” of the block you selected—copying every setting from 
its configuration pane into the new one, and even imitating the 
data plugs that are currently displayed. This is another wonderful 
feature inherited from NXT-G’s “parent language” LabVIEW, and it’s 
great that the developers left such things in to help the advanced 
user.

loop and switch 
structures

The Loop and Switch structures function almost like composite 
blocks, or blocks that contain other blocks. When they are first 
placed they do nothing, because there is nothing inside them to do; 
you must drop blocks into them to set up their sequences. 

multitasking: no such thing as a free lunch

Don’t think that running two sequences in parallel makes things twice as fast. Just like you, the NXT can’t really 
do multiple tasks at once (there’s only one primary processor trying to execute your code). Behind the scenes 
it rapidly switches between all the currently executing sequences: It first executes a little bit of code from this 
sequence; it then skips down and executes a little bit of code from the next parallel sequence, and so on. In 
effect, running two sequences in parallel means that each sequence is running significantly slower than if the 
processor were running only one. There are still times when these parallel sequences are handy (for instance, 
watching a sensor for something to change while at the same time calculating some math or moving the robot), 
but it doesn’t mean your NXT is working “twice as fast.”

configuration hints

Notice that the block icons give you hints about how the configurations are 
set up. For instance, a Move block set to unlimited displays a little infin-
ity symbol in its lower-right corner, telling you how it is configured without 
your having to view the configuration pane. Another great example is the 
mini–Venn diagram on the Logic block, which changes to represent the sort of 
logical operation that it is configured to perform (in this case a logical AND).

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



66	 chapter 7

connection [0]. To further complicate matters, a message going to 
an NXT can be placed in one of those 10 mailboxes to try to help 
keep things organized. Figure 7-11 shows a simple “map” of a BT 
network involving four NXTs.

An NXT is determined to be a master if it initiates a BT con-
nection, and its identity as master cannot be changed while the 
program is running. 

This hints at several important limitations under this system: 

N	 There is no broadcast mode; if an NXT needs to send a message 
to every NXT in the network, it must do so to only one NXT at a 
time. (If the sending NXT is a slave, it must send a message “up” 
to the master, which then echoes the message “down” to the 
other NXT slaves, one at a time.) 

N	 An NXT can never be both a master and a slave, because a slave 
NXT has only one connection: back to the BT master in the 
network. 

N	 If you inspect the NXT-G blocks or the menus on the NXT brick, 
you’ll see only four listed connections, [0] through [3]. This means 
that under NXT-G, a BT network will interconnect with at most 
four NXTs: the master with three slaves beneath it.

setting up 
an inter-NXT 
connection

Setting up an inter-NXT connection is simple. To do so, all you need 
are (at least) two NXTs with BT turned on and visible. To set up a 
connection for the first time on the NXT that will ultimately be the 
BT master in this mini-network, do the following:

1.	Select Search under the BT menu and wait while it tries to 
discover BT-capable devices in the area. After a while, it should 
ask you to select the device you want to connect to from a list. 

2.	Select the NXT you want to network with and then assign it to 
connection [1], [2], or [3]. (Connection [0] is not available because 
this is a downlink from master to slave, and connection [0] is 
reserved for a slave uplink connection.) For this example, use 
connection [1].

3.	If this is the first time these two NXTs have been connected, you 
have to go through the passkey windows on each to complete the 
connection. As with the computer, once you have walked through 
the passkey window to establish a connection for the first time, the 
NXT will remember it for you. For any future connections you 
should be able to open the Contacts menu, select the NXT you 
want to connect to, and then assign a connection to it. It’s that 
easy.

note	 If you play with BT connections a lot (especially if you 
are using a NXT-to-PC BT connection to download and test NXT-
to-NXT BT programs—as discussed in Chapter 8), you might find 
that the computer reports that it can’t establish a connection. 
One reason for this is that only one connection is allowed for any 
BT slave (the one back to the master). Therefore, if you tell the 
computer to connect to an NXT that is currently configured in an 
existing network, chances are something will act funny. Either 
the computer will not be able to establish a connection, or the 
previous network will be torn down by the NXT being ripped out 
of it when the computer demands a connection. To avoid confu-
sion, make sure that the device in question is not already locked 
into some other BT network before trying to establish a BT con-
nection. If it is, disconnect it first. No single NXT can be part of 
two networks simultaneously.

[1] [2] [3]

Master

Slave A Slave B Slave C

[0] [0][0]

Figure 7-11: A diagram of the specific connections in a typical four-NXT network 

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



	 bluetooth on the nxt	 67

communicating between NXTs

After your NXTs are connected, you can send information from 
one NXT to the other, as long as you remember which connection 
(address) to send (mail) the information to. For example, to give a 
friend a new sound or program file that is on your NXT, you could 
set up a BT connection to your friend’s NXT, select the file you want 
to transfer, choose Send (denoted by the flying letter icon), and then 
select the connection over which you want to send the file. The two 
NXTs should then obediently transfer the file, so your friend ends up 
with a copy as well. Now you have a way to transfer custom sound 
files or program files without any need to haul a computer around!

BT messaging 
under program 
control

After two or more NXTs are connected, programs running on them 
can exchange information over the network via NXT-G Send and 
Receive Message blocks. While the network connection must be set 
up manually from the NXT menu system, all the message sending 
and receiving can be handled within a running program. 

To send a BT message, drop a Send Message block onto the 
program sequence beam and configure it. There are three parts to 
the configuration pane: 

N	 The connection used to send the message out on ([0] for a slave 
sending a message back to the master NXT; or [1], [2], or [3] for 
a master NXT sending to one of the three slaves it might be con-
nected to) 

N	 What the message is (you need to specify both its type—Text, 
Number, or Logic—and its value) 

N	 Which mailbox to place the message in on the receiving NXT 

All these parts can be set in the configuration panel, or wired 
in from some other part of the program through the block’s data 
hub. You can send logic values (true or false); numbers between 
−2,147,483,648 and 2,147,483,647 (for those of you with two fingers, 
that’s 232 different numbers, as opposed to the RCX limit of 28); 
or strings up to 58 symbols (like this sentence)—a great step up 
from the old IR messaging system.

receiving messages

Sending a message isn’t very useful unless you have a way to 
retrieve and read incoming messages. To do this, you’ll use the 
Receive Message block.

WAITING FOR DISCOVERY

Note that the wait while the NXT tries to discover other BT devices depends in part on just how many BT- 
visible devices are in range. During a scan, the NXT requests and gathers information from any BT device it can 
find, which can be a lot of information if there are a lot of devices. I tried this once at a large conference, and 
was surprised when several minutes later, the NXT returned with a list of something like 20 “unknown devices,” 
presumably BT-equipped cell phones and so on. It seems a lot of tech folks leave their BT devices on and visible!

RBT VS. RXE

There is a difference between a NXT-G RBT file on the computer and the executable (RXE) file on the NXT brick. 
The RBT file (with the .rbt extension) is what you can open and edit in the NXT-G environment, while the RXE 
file (with the .rxe extension) is the actual machine code that the NXT can use. The RXE file is the file that is 
mailed to your friend’s NXT, but there is no way to translate an RXE file into an editable RBT file. So although 
BT mailing enables you to share working programs, it does not give your friends a copy of the code for the 
program that they can open, learn from, or understand in detail. Still, it’s better than nothing.

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



building 
ScanBot

ScanBot has a simple design and is quite easy to build. It works by 
moving a Light Sensor across every part of an image to be scanned, 
taking hundreds of measurements as it goes. It compares each 
measurement with a variable threshold and determines whether 
to represent the tiny area from which the measurement was taken 
with a black or white dot on the NXT’s LCD. A unique and fun aspect 
of ScanBot’s design is that the entire robot moves over the image 
to be scanned, instead of feeding the image through the robot or 
moving the Light Sensor over the image within the robot. 

ScanBot has four main components, which are labeled in 
Figure 15-1. In the middle of ScanBot, two long beam constructions 
form the bridge, which supports the Light Sensor carriage, a motor-
ized carriage that holds a Light Sensor and travels back and forth 

across the bridge to scan successive lines of the image. Each end of 
the bridge is supported by a wheel: one under the NXT module, and 
one (which isn’t visible in Figure 15-1) under the motor module. The 
two wheels are connected by a drive shaft, which the motor module 
rotates to move the entire ScanBot across the image. To scan, the 
Light Sensor carriage travels over the bridge, scanning one line of 
the image. Then the motor module moves ScanBot down a tiny bit, 
and the Light Sensor carriage travels across the bridge again, scan-
ning another line of the image right below the previous line. This 
process is repeated many times, until as much of the image that can 
fit on the LCD has been scanned.

First, build the motor module, which moves ScanBot down 
the image being scanned. The motor module includes the wheel 
beneath it and part of the drive shaft that extends toward the other 
side of the bridge. This will later be connected to the wheel, which 
sits under the NXT module on the other side of the bridge. Both 
wheels will then turn the same amount, giving a preciseness to the 
downward movements that is necessary to get a good scan.

250	 chapter 15
No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,

Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 
Christopher R. Smith, and Rob Torok



4

1

2

3

	 scanbot: An Image-Scanning Robot	 251
No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,

Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 
Christopher R. Smith, and Rob Torok



No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



326	 chapter 16

Figure 16-37: Inside the Switch block, option 2: Star

Figure 16-38: Inside the Switch block, option 3: Zigzag

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok



	 marty: A performance art robot	 327

Figure 16-39 shows the results when Marty runs MegaRandom. SpiralStraight

Finally, here are two examples of how the counter of a Loop might 
be used to create a shape that develops according to the cur-
rent value of the Loop counter. The first of these, SpiralStraight 
(Figure 16-40), is essentially a modified version of the RandomStar 
program, with a twist that each side is just a little longer than the 
previous one. The turn angle is chosen at random at the start of the 
program, but then remains the same for the rest of the drawing. 
Some examples from running this program repeatedly are shown in 
Figure 16-41.

Figure 16-39: Marty, the performance artist!

Figure 16-40: SpiralStraight

Figure 16-41: Examples of SpiralStraight

No Starch Press, Copyright © 2007 by Martijn Boogaarts, Jonathan A. Daudelin, Brian L. Davis,
Jim Kelly, David Levy, Lou Morris, Fay Rhodes, Rick Rhodes, Matthias Paul Scholz, 

Christopher R. Smith, and Rob Torok




