

12
I N F R A R E D R E M O T E C O N T R O L

Remotes have become our most natural
means of controlling certain appliances,

and if you’re like us, you’ll occasionally spend
several minutes trying to locate a remote control

rather than trying to engage some device’s obscure
front panel. In the future, we expect to see more
appliances forfeiting the front panel altogether in favor of the keypad of a
simple remote. Here’s a rule of thumb: If you are building an appliance that
might be enjoyed by people while they are sitting on a couch, include a
remote control.

In this chapter we will cover the following topics:

� Communicating with infrared light

� Hardware for remote control receivers

� Installing and configuring LIRC for the Laddie appliance

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

198 Chap te r 12

Communicating with Infrared Light

The infrared (IR) light used by remote controls has a wavelength close to,
but greater than, visible light. Because it’s close to visible light, it travels in
straight lines and reflects off of surfaces, but it doesn’t go through opaque
objects. This limits the applications for which IR is useful. It’s good for
controlling a set-top box, but not so good for opening a garage door, if
there’s a solid wall between the transmitter and the receiver.

For the most part, the fact that IR is invisible is a good thing. It may be
harder to debug something that’s invisible, but when you’re watching the
late-night movie on your new Linux-based DVR, it’s nice to know you can
turn down the volume without shining visible light onto the screen.

NOTE If you wish you could see the light from a remote control, perhaps to verify that a unit
isn’t broken, you can look at it using a cell phone camera. These cameras are sensitive
to infrared, and on cameras we’ve experimented with, they display this “color” as bright
white.

Protocols for Encoding Remote Control Commands

In order to transfer information, a remote control transmitter and its receiver
must use the same standard or protocol for encoding commands. A remote
control protocol specifies the following three things:

� How it represents ones and zeros

� How these ones and zeros are combined or framed to form messages

� How these different messages are to be interpreted

Companies that build remote-controlled devices don’t generally
publish their protocols, but it’s not hard to reverse engineer the basic
commands, and the Internet has plenty of information from people who
have done just that. As an example, we’ll consider a protocol Sony has
used for some of its televisions. If you do some research on the Internet,
you might see this protocol referred to as the Sony Integrated Remote
Control System (SIRCS) protocol. We chose to use this protocol for the
Laddie appliance because the protocol is easy to understand. It is also
easy to produce: We purchased a universal remote (RCA RCU410) and
programmed it to “Sony TV” (Code 002).

This Sony TV protocol uses pulse-coded data encoding. With this
encoding, a bit is represented as a variable-width pulse, or presence of
light, followed by a constant-width space, or absence of light. Based on
our own timing measurements with our handheld remote, a zero has a
650-microsecond pulse, a one has a 1,300-microsecond pulse, and each is
followed by a 500-microsecond space. These encodings are illustrated in
Figure 12-1.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 199

Figure 12-1: Zeros and ones in the Sony TV protocol

A frame in the Sony TV protocol (again, as measured for our particular
remote) begins with a header consisting of a single 2,500-microsecond pulse
followed by a 500-microsecond space. A seven-bit command immediately
follows the header, and a five-bit address follows the command. Both the
command and the address are transmitted with the least-significant bit (lsb)
first. Figure 12-2 shows the waveform for the TV/Volume– command.

Figure 12-2: The TV/Volume– command in the Sony TV protocol

The address specifies a device (in our case, always 0x01 for TV), and
the command specifies the input to that device. Table 12-1 lists some of the
command codes for the Sony TV protocol.

For the Laddie appliance, we use the commands Channel+, Channel–,
Volume+, Volume–, and Power. Of course, the Laddie appliance doesn’t
really have channels or volume levels; we have simply chosen these as
convenient inputs for the framebuffer menu navigation.

There are many other remote control protocols, and each represents a
set of engineering trade-offs. For example, Panasonic’s REC-80 protocol uses
constant-width pulses and encodes zeros and ones by the length of the space

Table 12-1: Device Addresses and Command
Codes in the Sony TV Protocol

Command code Command

0x00–0x09 1–9, 0

0x10 Channel+

0x11 Channel–

0x12 Volume+

0x13 Volume–

0x15 Power

zero

650 µs 500 µs

one

1,300 µs 500 µs

2,500 µs

Header
msblsb

Address

1 1 0 0 1 0 0 1 0 0 0 0

msblsb
Command

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

200 Chap te r 12

between pulses. This approach can lead to longer battery life because it mini-
mizes the amount of time the remote control spends emitting light. Other
protocols save battery life by transmitting a short “Repeat” command when a
button is held down, rather than repeatedly transmitting the entire command,
as the Sony TV protocol does.

NOTE To learn about some of these other protocols, visit http://sbprojects.com/knowledge/ir/
ir.htm.

Reducing Interference by Modulating the Infrared Signal
So far, we’ve treated infrared pulses as if they corresponded to steady beams
of light. But consider Figure 12-2, and suppose that some flickering light
bulb were to generate pulses of IR that overlapped some of the spaces in a
message. Clearly, such interference could make it impossible for a receiver to
correctly interpret the message. The solution is to modulate the pulses of IR
light. In a modulated pulse, the IR light is actually turning on and off at a
fixed frequency, typically between 30 and 60 kHz (kilohertz). Like picking
out a voice in a crowded room, the receiver can use this frequency as a
signature to discriminate the intended signal from the background noise.
Because of this modulation, the pulse-coded zeros and ones of the Sony TV
protocol are more accurately depicted as in Figure 12-3.

Figure 12-3: Modulated pulses in the Sony TV protocol

We measured the modulation frequency for our remote as roughly
40 kHz. Thus, for our remote, the zero “pulse” in Figure 12-3 actually
consists of 40,000 * 0.000650 = 26 much shorter pulses.

Controlling an Appliance with Infrared Light
Now that we’ve seen how infrared light can convey information, we can design
a system for implementing remote control of an application. Figure 12-4
illustrates such a system.

Figure 12-4: A complete remote control system

zero

650 µs 500 µs

one

1,300 µs 500 µs

Keypad Encoder Modulator IR Emitter

IR Detector Demodulator Decoder Application

VOL–

Vol–

q w e

r

t y u i

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 201

On the transmitting side, a typical handheld remote control performs
the following steps:

1. It scans a keypad.

2. It encodes the input as a waveform according to some protocol.

3. It modulates this encoding with a frequency between 30 and 60 kHz.

4. It emits a corresponding pattern of infrared light.

On the receiving side, a typical IR receiver performs the following stages:

5. An infrared detector converts the input signal to a voltage waveform.

6. A demodulator removes the 30 to 60 kHz modulation.

7. A decoder analyzes this waveform and determines the corresponding
command.

8. An application responds appropriately to this input.

Hardware for Remote Control Receivers

In this section we’ll focus on IR receiver hardware. Designing remote control
transmitters is beyond the scope of this chapter, but our recommendation is
to take the same approach we took with the Laddie appliance: Use an off-the-
shelf, universal remote.

Detecting and Demodulating the IR Signal

The two stages of detecting and demodulating an IR input can be handled
by a single, commercial, off-the-shelf component. Figure 12-5 shows three
examples of this part, all produced by Sharp Microelectronics.

Figure 12-5: Infrared detector/demodulators

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

202 Chap te r 12

For the Laddie appliance, we chose the 40 kHz unit from Sharp’s
GP1UV70QS series (pictured on the right in Figure 12-5). Also popular is
the TSOP17XX series from Vishay. Each of these parts is easy to use with
perfboard or solderless breadboard prototyping materials. Each requires a
5V power supply and provides an output corresponding to the demodulated
IR waveform (see step 6 in Figure 12-4). When evaluating a particular device,
make sure the demodulation frequency is appropriate for your chosen
protocol. For low-power applications, you’ll also want to compare the
power requirements for different devices.

There isn’t a standard nomenclature for these devices. When you’re
searching for information, expect to see names like “IR Remote Receiver,”
“Photo Module for Remote Control,” or “Infrared Detecting Unit for Remote
Control.” In the remainder of this chapter, we’ll refer to them as infrared
detector/demodulators to emphasize the two functions they provide.

B U I LD I N G A S I M P L E I R D E T E C T O R

If you have access to an oscilloscope and would like to see a remote control signal
before it is demodulated, you can build the simple IR detector circuit depicted in
Figure 12-6. All you need is a power supply (a 9V battery is fine), an appropriately
valued resistor, and a phototransistor.

Figure 12-6: A simple IR detector

You’ll want to choose the resistor so that the output voltage is about half of the
supply voltage when the remote control is off. When we tried this, we used a 100K
resistor, and we held the remote control very close to the detector. We had good
results both with a Radio Shack infrared phototransistor (catalog number 276-142)
and when using another, unidentified, phototransistor we happened to have lying
around. The output will be weak, but it should be adequate for an oscilloscope. By
the way, this experiment is also useful if you need to determine the modulation
frequency for an unfamiliar protocol.

Resistor

V+

Output Voltage

Infrared Light

Phototransistor

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 203

Decoding Remote Control Waveforms
In the previous section we introduced off-the-shelf devices that will respond
to a remote control IR signal and produce a demodulated voltage waveform.
Before designing a circuit to take advantage of these devices, we need to
decide how we will decode that waveform. Decoding can be broken into
two steps: measuring the timing of the pulses and spaces that comprise a
waveform and interpreting this sequence of timings to identify the intended
message. We have three options for designing a decoder, depending on
which of these two tasks we assign to external hardware and which we assign
to the appliance’s processor. We’ll briefly discuss these three options before
describing the approach we took for the Laddie appliance.

Measuring and Interpreting in External Hardware

It’s possible to build receiver hardware that performs all of the decoding
tasks: measuring the waveform, determining the corresponding command,
and then transmitting that command as one or more serial bytes to the
appliance’s processor. Figure 12-7 illustrates this approach. Here, the receiver
has recognized the waveform for the Volume– command and has produced
the single ASCII character D for down.

Figure 12-7: Decoding waveforms in external hardware

The website http://linuxtoys.org/xirrc/xirrc.html describes an example
of this approach in which a preprogrammed Microchip PIC microcontroller
is used to decode Sony remote control commands and transmit command
characters to a serial port.

A limitation of this approach is that the receiver supports only one remote
control protocol. On the positive side, this approach makes it incredibly easy
to add remote control to your appliance. Just plug in the receiver and listen
for commands on the serial port.

Measuring in Hardware and Interpreting on the Appliance

In order to accommodate any remote control protocol, we can build receiver
hardware that measures waveforms but passes the timing information to the
appliance’s processor for interpretation. Figure 12-8 illustrates an approach
in which the timing of the pulses and spaces is encoded as a series of bytes,
each representing time in 50-microsecond increments.

Figure 12-8: Measuring waveform timing in external hardware

650 µs 500 µs1,300 µs 500 µs
Infrared
Receiver D.

Infrared
Receiver . . . 26 10 13 10 . . .

650 µs 500 µs1,300 µs 500 µs

.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

204 Chap te r 12

Since the appliance is given a complete representation of the input wave-
form, it can, in theory, decode waveforms for any protocol. The LIRC website
provides a link for a protocol called Universal Infrared Remote Transceiver,
second version (UIRT2), which works out the details of this approach. It is
described at http://users.skynet.be/sky50985.

As a related example, the Irman remote control receiver, available at
http://www.evation.com/irman/index.html, takes an innovative approach
and encodes any remote control command waveform by creating “pseudo-
random” signatures of six bytes. Irman works on the assumption that different
waveforms from a given remote will almost invariably have different signatures.
Because this technique applies to any waveform, this type of receiver can
work with any of the common remote control protocols, but the user has to
train it to interpret the signatures it derives.

As a third example, the LIRC website refers to the USB-IR-Boy project.
This project uses the inexpensive Freescale MC68HC908JB8 microcontroller
with built-in USB support to provide IR waveform timing values. It also
includes a Linux device driver to make these timing values available via the
/dev/usbirboy device file. Information is available at http://usbirboy
.sourceforge.net.

Measuring and Interpreting on the Appliance

The third approach to decoding waveforms is appealing because of its simple
hardware requirements. All the hardware has to do is power an infrared
detector/demodulator and provide the signal as an input to the appliance’s
processor. On the negative side, this method does place extra demands on
the processor. Specifically, the processor must respond to an interrupt every
time the input signal transitions high or low in order to measure timing
information. Nevertheless, because of the simple hardware requirements,
we have chosen this third approach for the Laddie appliance. In the next
section we will work through the details of building this kind of receiver.

Infrared Remote Control Hardware for the Laddie Appliance

If you’re not comfortable with building hardware, you might seek out a friend
who is, or—this is our recommendation—jump in and build it yourself anyway.
It’s a good first project and a satisfying one because of the new mode of control
it gives you for your Linux projects. You will certainly find the remainder of
this chapter more educational if you have hardware to experiment with.

To integrate our simple IR receiver with an appliance, we need two
things: a power source for the IR detector/demodulator and an input that
generates interrupts. The good news is that a typical serial port satisfies
both requirements. The output pins on a serial port provide adequate
power, and its Data Carrier Detect (DCD) input pin generates interrupts.
The bad news is that the serial port output voltages range from 3.7V to 12V
on the positive side and from 3.7V to 12V on the negative side. Moreover,
the serial port inputs require a swing between these same positive and
negative ranges. An IR detector, however, expects a clean 5V power supply
(for some parts, 3.3V); it outputs a 0V to 5V signal (for some parts, 0V to

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 205

3.3V). Thus, if you want to use a serial port input, you will need additional
circuitry to provide the required voltage for the detector and to shift the
detector output to valid serial port levels. Figure 12-9 illustrates this kind of
circuit.

Figure 12-9: A block diagram for a simple IR receiver

Here we assume the serial port has been configured to keep the Request
to Send (RTS) output at a high voltage level and the Transmit Data (TXD)
output at a low voltage level. The 5V regulator provides the voltage required
by the detector. The level shifter provides the correct voltage levels to the
DCD input.

NOTE If you look at IR receiver circuits presented on the Web, you’ll find some that take a
simpler approach, omitting the level-shifter and providing an output that swings
between 0V and 5V. This may work for your computer. If not, or if you want a more
robust solution, take the approach we’ve chosen here.

Figure 12-10 shows the schematic we chose for the Laddie IR receiver.

Figure 12-10: The IR receiver schematic used for the Laddie appliance

Here, U1 is an off-the-shelf IR detector/demodulator, U2 is a linear
voltage regulator that provides 5V to U1, and the transistor/resistor circuit is
the level-shifter that provides an output appropriate for the serial port. The
diode, D1, protects the circuit in case the RTS signal is improperly initialized,

Detector/
Demodulator

Infrared Light

5V Regulator

RTS

DCD

TXD

Level
Shifter

3.7 to 12V

−12 to −3.7V

OUT

+5V

GND Output to PC

Detector/
Demodulator

RTS

DCD

TXD

+5V

GND
R1

R2

T1

T2

T3

U1

+5 V+
GND

C1 C2

D1

RTS

9

6

5

TXD

1
DCD

CONN1

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

206 Chap te r 12

which may cause it to go negative relative to TXD. Table 12-2 provides the
specific parts that we’ve used, with their approximate costs. Where we’ve listed
multiple parts, you can assume they are interchangeable. Between Digi-Key
(http://www.digikey.com) and Jameco Electronics (http://www.jameco.com),
you shouldn’t have any trouble finding these parts.

Figure 12-11 shows a few of our prototypes. We recommend starting with
a solderless breadboard and 22 AWG solid (non-stranded) wire, as pictured
on the left. You’ll also need a wire stripper for the 22 AWG wire and a volt-
meter for debugging. The one place you’ll want to use a soldering iron is to
connect wires to the DB9 serial connector. In the left picture, two wires from
the DB9 connector provide power and ground to the strips along the edges
of the breadboard. The third wire provides the DCD signal back to the
computer via the serial cable.

Figure 12-11: Two prototypes for an infrared remote receiver

Table 12-2: Parts List for the Laddie Appliance’s IR Receiver

Ref Part Cost Description

U1 Sharp GP1UV701QS,
GP1UV70QS, GP1UW701QS,
GP1UW700QS

$1.50 Infrared detector/demodulator

U2 LM78L05, LP2950CZ5 $0.80 5V linear voltage regulator

C1 0.47 uF or higher $0.15 Electrolytic capacitor

C2 0.47 uF or higher $0.15 Electrolytic capacitor

D1 1N4148, BAT46 $0.35 Diode

R1 220K, ¼ watt $0.06 Resistor

R2 100K, ¼ watt $0.06 Resistor

T1, T2 PN2222A, 2N3904 $0.20 NPN transistor

T3 PN2907A, 2N3906 $0.20 PNP transistor

CONN1 DB9 socket $0.50 9-pin d-sub serial connector, female

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 207

Once you have a working circuit, you can build something more perma-
nent using perfboard and a plastic enclosure. In the picture on the right,
only one side of the enclosure is shown. We drilled a hole at one side for
the IR detector/demodulator and cut a hole on the other side for the DB9
connector. A piece of cardboard holds the detector/demodulator in place.

When building your prototype, follow these steps to make sure the
circuit is operating properly:

1. Build the circuit, but don’t connect the serial port or the IR detector/
demodulator. In place of the RTS and TXD pins, use a 9V battery for
power. Use the positive battery terminal in place of the RTS input and
the negative terminal in place of the TXD input.

2. Verify that the voltage between the regulator output and the negative
battery terminal is 5V.

3. Verify that the voltage between the circuit output and the negative bat-
tery terminal is at least 8V. (The “circuit output” is the point that you will
later connect to the DCD pin of the serial port.)

4. Now connect the open end of R1 to the 5V output of the regulator, and
verify that the voltage between the circuit output and the negative bat-
tery terminal is zero volts.

5. Finally, complete the circuit by adding the IR detector/demodulator
and connecting your computer’s serial port.

The remaining tests for your IR receiver hardware require the LIRC
software. In the next section, we’ll introduce the LIRC software package and
describe how we incorporated it into the Laddie appliance.

Installing and Configuring LIRC for the Laddie Appliance

The LIRC software package can be downloaded from http://www.lirc.org; it
includes an extensive collection of device drivers, daemons, and tools for
controlling user applications with remote control hardware. We don’t have
room to cover all of these elements here, but we will present the layers that
make up this software architecture, and we will describe in detail the
particular device driver and daemon that are appropriate for the Laddie
appliance. Once you’ve understood this subset, you should find it easy to
master any other parts of the architecture required for your own appliance.

Figure 12-12 provides a high-level view of the LIRC software architecture
as it applies to the Laddie appliance. At the right of the diagram, we’ve
shown how elements of the LIRC architecture correspond to our earlier,
more general discussion of IR receivers.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

208 Chap te r 12

Figure 12-12: The LIRC architecture

In kernel space, a device driver accesses the receiver hardware through an
external port. For our appliance, this driver is provided by the LIRC package
and uses interrupts to perform waveform timing on the input waveform.

NOTE As you saw in the section “Decoding Remote Control Waveforms” on page 203, there
are some IR receivers that perform the waveform timing and possibly even the waveform
interpretation in external hardware. For these receivers, the kernel device driver may be
a generic Linux serial driver or a USB driver.

In user space, for systems such as ours that don’t perform interpretation in
external hardware, we use the lircd daemon. This daemon accesses a config-
uration file that characterizes the remote control’s command protocol and
analyzes the timing information provided by the device driver to generate the
corresponding commands. In some cases, the user application will access the
output of the lircd daemon directly. The Laddie appliance takes this approach.
For applications that were not built with the lircd daemon in mind, several
LIRC tools are available to process the output of the lircd daemon and
provide program input, execute appropriate commands, or simulate mouse
or keyboard events. We’ll discuss these tools later in the section “LIRC Tools
for Controlling Applications” on page 218.

In the remainder of this chapter, we will describe in detail the elements
of the LIRC architecture and show how we configured LIRC for the Laddie
appliance.

Installing the LIRC Software

The LIRC package is included on this book’s companion CD, and we
recommend you use the CD when working through the examples in this
chapter. However, if you need to set up your own system in the future, we
will describe the steps we took to install the package.

IR ReceiverExternal
Hardware

User
Space

User Application

LIRC Tools

lircd Daemon

Device DriverKernel
Space

Application

Decoder
(interpretation)

Decoder
(measurement)

IR Detector/
Demodulator

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 209

We downloaded version lirc-0.8.1 from http://www.lirc.org and installed
it with these commands:

./setup.sh

./configure --with-kerneldir=/usr/src/linux-2.6.10 --with-driver=serial

make

make install

The setup.sh script asked us to make choices about our installation.
Under the Driver Configuration (driver:serial io:0x3f8 irq:4) menu, we chose
the Home-brew (16x50 UART compatible serial port) driver, selected COM1
(0x3f8, 4) for the base address and IRQ, and disabled all driver-specific
options. Under the Software Configuration menu, we disabled all options.
Then we selected Save Configuration and exit.

LIRC is a package that allows you to decode and send IR and other signals
of many (but not all) commonly used remote controls. It includes daemons
that decode the received signals as well as user space applications that allow
controlling a computer with a remote control.

The ./configure --help command provided a long list of driver choices, as
well as a dauntingly long list of configuration options. For our appliance, the
defaults were generally appropriate. We only needed to provide the location
of our Linux kernel source tree using the --with-kerneldir option and to
specify the serial driver with the --with-driver option.

Figure 12-13 shows how representative components installed by the LIRC
package fit into the LIRC software architecture. Although the LIRC package
includes utilities that support the X Window System, we don’t show them here,
since the Laddie appliance doesn’t use X.

Figure 12-13: Components of the LIRC package

IR ReceiverExternal
Hardware

User
Space

Serial Port: DCD

Kernel
Space

Laddie
Framebuffer UI

irw

ircat, irexec,
irpty, irxevent
(/etc/lircrc)

lircd Daemon
(/etc/lircd.conf)

mode2,
irrecord

lirc_serial

/dev/lircd

/dev/lirc

Vol–

Pulse: 654 µs
Space: 503 µs

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

210 Chap te r 12

Before we dive into the details, let’s start with a quick, bottom-to-top tour
and explain how the LIRC receiver controls the Laddie appliance’s frame-
buffer UI, which is described in Chapter 11. The IR receiver external hardware
provides the remote control waveform to the DCD pin of a serial port. In
kernel space, the lirc_serial device driver (one of many included in the LIRC
package) monitors this pin and produces a binary stream of timing data via
the device file /dev/lirc. In user space, the lircd daemon analyzes the timing
data from the /dev/lirc device file to provide a sequence of command strings
on the Unix socket /dev/lircd. The framebuffer UI connects directly to this
socket in order to respond to user input.

Now for all the details we left out. In the remainder of this section, we will
look more carefully at each of the layers of the LIRC software architecture.

Configuring the lirc_serial Kernel Device Driver

The lirc_serial device driver is actually implemented by two kernel modules,
lirc_serial.ko and lirc_dev.ko, which were placed in the directory /lib/
modules/2.6.10/misc/ when we installed the software. In order to use
these modules, we had to perform three additional steps: free up a serial
port, create a device file, and load the modules into the kernel. We created
a startup script, lircd, to perform these steps. We will review the steps here;
you can see the complete code on the CD in the /etc/rc.d/init.d directory.

Freeing Up a Serial Port

For the Laddie appliance’s IR receiver input port, we chose COM1 (/dev/
ttyS0). The Linux kernel typically enables COM1 through COM4 as serial
ports at startup; thus, we needed to free up COM1 for LIRC. To do this, we
used the setserial command:

setserial /dev/ttyS0 uart none

By setting the type of the hardware (the UART) to none, this command
disabled the specified port.

NOTE UART stands for Universal Asynchronous Receiver Transmitter. A UART handles the
low-level implementation of a serial link so that the CPU need only be concerned with
providing bytes to transmit and processing bytes that are received.

For the remainder of this chapter, we recommend that you boot the
Laddie appliance using the Laddie CD and follow along with the exercises.
After booting the CD, exit the framebuffer UI (press ESC), and log in as root
with an empty password. Verify that port COM1 was configured properly by
executing the following command at the laddie:~# prompt:

laddie:~# setserial /dev/ttyS0

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 211

You should see the following output:

/dev/ttyS0, UART: unknown, Port: 0x03f8, IRQ: 4

The UART type is unknown, which means the port is available.

Creating a Device File

You may recall from the previous chapter that we used a device file /dev/fb0
to expose the framebuffer functionality. Similarly, we had to provide a device
file to expose the lirc_serial functionality. The following code created the
character device file /dev/lirc with major number 61 and minor number 0,
as required for the lirc driver.

mknod /dev/lirc c 61 0

With the Laddie CD, verify that the /dev/lirc device file exists by using
the command:

laddie:~# ls -l /dev/lirc

You should see the output:

�crw------- 1 root root �61, �0 2007-01-27 08:03 /dev/lirc

This indicates that the file represents a character device that is �
readable and writable by root, � with major number 61, and � with minor
number 0.

Loading the lirc_serial Modules into the Kernel

With the serial port available and the device file in place, we were able to
load the lirc_serial device driver using the modprobe command:

modprobe lirc_serial

To verify that the lirc_serial device driver is loaded, execute the
following:

laddie:~# lsmod | grep lirc

You should see output like this:

lirc_serial 13152 1
�lirc_dev 14804 1 �lirc_serial

The first column shows the loaded modules; the fourth column shows
dependencies. Here we see that � the lirc_serial module depends on � the
lirc_dev module.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

212 Chap te r 12

NOTE If we had wanted to use a different port than COM1 for our IR receiver, we would
have provided additional arguments to the lirc_serial driver with the modprobe com-
mand. To specify COM2, we would have used the command modprobe lirc_serial
irq=3 io=0x2f8. The default irq and io values for COM3 and COM4 are (4, 0x3e8)
and (3, 0x2e8), respectively.

Testing the lirc_serial Driver

Now that we’ve verified that the lirc_serial driver is loaded properly, we can
use the Laddie CD to test the IR receiver hardware we built earlier. We’ll
begin by reviewing what we want to test.

Recall that the signal provided by our LIRC receiver looks something
like Figure 12-14 (at least in the case of a Sony TV Volume– command).

Figure 12-14: Waveform for the Sony TV Volume– command

The job of the lirc_serial kernel device driver is to measure the timing of
spaces and pulses in this signal and provide that information via a device file.
The particular waveform shown here complies with the Sony TV protocol,
but the lirc_serial driver is designed to work with any protocol. The driver
includes an interrupt handler that is invoked every time the DCD pin changes
state. The handler uses a system timer to measure the pulses and spaces in
microseconds, and then it emits this timing information via the /dev/lirc
device file as a sequence of 32-bit words. In each word, bits 0 through 23
specify the length of the space or pulse in microseconds (with a maximum
value of 0xFF FFFF). Bit 24 is zero for a space and one for a pulse. Bits 25
through 31 are always zero. To test the lirc_serial device driver, we’d like to
verify that these values are generated when we press a remote control button.

Before we can access the /dev/lirc device file, we need to make sure
it’s not already in use by some other process. When the Laddie CD boots, it
launches the lircd daemon in order to support the framebuffer UI. Since
the lircd daemon accesses /dev/lirc, we prepare for our test by killing that
process.

Execute the following commands at the Laddie appliance command
prompt:

laddie:~# laddie stop
laddie:~# kill $(pidof lircd)

2,500 µs

Header
msblsb

Address

1 1 0 0 1 0 0 1 0 0 0 0

msblsb
Command

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 213

After the first command, you will need to wait a few moments for the
Laddie application to stop. In the second command, the pidof function out-
puts the process ID of the lircd process. The $(...) construct provides this
output as a parameter to the kill command, which terminates the specified
process. We can now access the /dev/lirc device file for our own purposes.

As we saw in the previous chapter, we can use the cat command to
access output that is provided via device files. Now we don’t want to simply
cat the output of /dev/lirc to the console, because some of the output data
might be interpreted as control characters and the console could end up
in an unusable state. One thing we can do is pipe that output through the
hexdump utility, which translates binary data into printable ASCII hexadecimal
characters.

Enter the following command:

laddie:~# cat /dev/lirc | hexdump

Now, any pulses that arrive on the DCD pin of serial port COM1 will be
measured by the lirc_serial device driver, read by the cat command via the
/dev/lirc device file, and displayed in ASCII hex by hexdump. To generate
such pulses, connect your IR receiver to the COM1 port, point your remote
control at the IR detector/demodulator, and press a button. (At this point,
the particular kind of remote doesn’t matter.) If everything is working
properly, you should see output like the following:

0000000 df67 0061 099d 0100 01fb 0000 04f6 0100

0000010 0216 0000 04fd 0100 01fa 0000 026e 0100

0000020 022d 0000 028a 0100 01fb 0000 04f7 0100

0000030 01fd 0000 02a1 0100 01fa 0000 02a0 0100

0000040 01fb 0000 04fc 0100 01fb 0000 02a0 0100

0000050 01fa 0000 0283 0100 0218 0000 0289 0100

This is the output we generated by briefly tapping the Volume– button
on the universal remote that we programmed for Sony TV.

If you’re not sure your IR receiver hardware is working (or if you don’t
have an IR receiver at this point), you can still test the lirc_serial device driver
by creating random pulses on the DCD pin of the serial port. One way to do
this is to intermittently connect pin 1 (DCD) to pin 7 (RTS) of the serial
port. If this doesn’t produce a result, try intermittently connecting pin 1 to
pin 3 (TXD). If your computer’s serial port is built to standard specifications,
it won’t be a problem if you connect the wrong pins by mistake. Still, if you’ve
just purchased a fancy, new laptop, you might want to try this experiment on
a friend’s Linux box first.

Using the cat /dev/lirc | hexdump command is a good exercise because it
demonstrates that the output of /dev/lirc is simply binary data that can be
read like a file. Neither cat nor hexdump know anything about infrared, yet
they display the data just fine. But the output of hexdump isn’t easy to read.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

214 Chap te r 12

Fortunately, the LIRC package includes a utility, mode2, that does understand
the output of the lirc_serial driver and can display it as pulse and space
timing data.

Press CTRL-C to terminate the previous command, and execute the
following one:

laddie:~# mode2

Now point an IR remote control at the receiver while pressing buttons.
The command mode2 reads the output of /dev/lirc, parses the 23-bit timing
data and the one-bit pulse or space indicator, and produces a stream of pulse
and space timing information. As an example, we observed the following
train of space and pulse timings from mode2 when we stimulated our IR
receiver with a single Sony TV Volume– command.

If you refer to “Protocols for Encoding Remote Control Commands”
on page 198, you will notice that these timing values are noisier than the
idealized waveform would suggest. The first pulse is roughly 2,500 milli-
seconds and corresponds to the header. The other pulses are roughly 1,300
or 650 milliseconds, corresponding to ones and zeros, respectively. The spaces
are roughly 500 milliseconds, but note the large initial space value corre-
sponding to the time between button presses. It is the job of the lircd daemon
to reject the pulse trains that do not correspond to valid waveforms and to
correctly interpret the ones that do. When you are finished experimenting
with mode2, press CTRL-C to terminate the utility.

At this point, we have established that the lirc_serial device driver is
working. In the next section we will provide instructions on configuring the
lircd daemon, which will use the output of this device driver.

NOTE If you would like to write a program that uses the output of the lirc_serial device driver
directly, the source code for the mode2 utility provides an example of how to access the
/dev/lirc device file. This source is available from http://www.lirc.org and is also
provided in the lirc-0.8.1.tar.bz2 tarball in the /usr/src/packages/ directory of this
book’s companion CD.

laddie:~# mode2 space 568 pulse 1265

space 5794213 pulse 663 space 517

pulse 2471 space 494 pulse 663

space 496 pulse 1260 space 516

pulse 1282 space 497 pulse 633

space 546 pulse 685 space 546

pulse 1263 space 518 pulse 639

space 517 pulse 661 space 496

pulse 611 space 515 pulse 682

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 215

Configuring the lircd Daemon

The cleverest part of the LIRC package is the lircd daemon. This is the part
that analyzes the noisy timing values coming from the /dev/lirc device file
and produces a sequence of commands that are easily parsed by downstream
LIRC tools or user applications.

In order for the lircd daemon to interpret the timing data from /dev/
lirc, it has to understand the remote control protocol. The configuration
file /etc/lircd.conf captures this protocol information. The following is the
lircd.conf file used by the Laddie appliance with comments and a few of the
button entries removed to save space.

begin remote

 name SONY-TV

 bits 12

 flags SPACE_ENC

 eps 30

 aeps 100

 header 2457 525

 one 1269 520

 zero 650 520

 gap 26076

 toggle_bit 0

 begin codes

 POWER 0xA90

 ENTER 0xD10

 VOL- 0xC90

 VOL+ 0x490

 CH- 0x890

 CH+ 0x090

 end codes

end remote

You don’t need to understand the entries in this file to use LIRC, but
we’ll make a few comments here in case you want to edit the file manually.
The name can be any string you like that describes the remote. The bits field
is the total number of data bits (in our case, command-code bits plus address
bits). The eps and aeps fields represent relative and absolute error tolerances
(in our case, 30 percent and 100 microseconds). The header, one, and zero
fields represent the pulse and space timings (in microseconds) for the header
and data bits. There is a gap of about 26,000 microseconds between repeated
commands, and there is no toggle bit that changes for repeated commands.
Note that these fields reflect actual timings measured by the device driver
and can vary from the protocol standard. The codes are the actual data bit
sequences for the various commands. For the additional fields that may apply
for other remotes, you can see the details at the WinLIRC web page, http://
winlirc.sourceforge.net/technicaldetails.html.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

216 Chap te r 12

If you have a remote that uses the same protocol as ours, you should be
able to control the Laddie appliance without updating the /etc/lircd.conf
file. (Again, we are using an RCA RCU410 universal remote, programmed as
a Sony TV, code 002.) The LIRC website also provides configuration files for
many remotes, but using the LIRC irrecord utility, it’s easy enough to generate
these files from scratch. The irrecord utility creates configuration files by
monitoring the output of /dev/lirc while prompting the user for remote
control input.

Now let’s create a configuration file for your remote. As we mentioned
when we were testing the lirc_serial device driver, we need to kill the lircd
daemon before we access /dev/lirc. If you didn’t kill lircd earlier, do so now:

laddie:~# kill $(pidof lircd)

To create a new lircd configuration file, rename or delete the old one,
then run the irrecord command:

laddie:~# mv /etc/lircd.conf /etc/lircd.conf.bak
laddie:~# irrecord /etc/lircd.conf

Read the instructions printed by the irrecord utility carefully. The utility
will prompt you to press remote control buttons in a particular sequence, and
it will also ask you to assign names for the buttons you choose to program.
Since you will be using the remote to control the Laddie framebuffer UI,
you will need to provide the button names that the Laddie appliance expects.
It doesn’t matter how you assign the actual buttons, but you will need to
use the following names in uppercase letters: POWER, VOL+, VOL–, CH+,
and CH–. If you restart the irrecord utility, be sure to rename or delete the
previous /etc/lircd.conf file first. Once you’re satisfied with the configuration
file, you are ready to test the lircd daemon.

NOTE If you choose to download a configuration file for your remote from http://www.lirc.org,
you will need to edit it to make sure the button names are the ones the Laddie appliance
expects. Keep in mind that any updated configuration files will be replaced with the
original files when you reboot the Laddie CD.

Testing the lircd Daemon

To use your new lircd configuration file, start the lircd daemon with the
command:

laddie:~# lircd

This command will complete immediately without printing anything. To
verify that the daemon is running, execute the command:

laddie:~# pidof lircd

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 217

and verify that it returns an integer. The lircd daemon will read timing data
from the /dev/lirc device file and, using the configuration specified in /etc/
lircd.conf, provide button-press information at the Unix socket /dev/lircd in
the form of newline-delimited ASCII strings.

Unix sockets are different from regular files or device files. In particular,
you can’t use the system call open() to access them; you have to use connect()
instead. This means that we can’t simply use cat to examine the output of
/dev/lircd the way we did with /dev/lirc. Let’s write a simple program,
socket_cat, that does allow us to view this output.

NOTE If you are eager to test the lircd daemon and would rather skip this exercise, you can use
the LIRC utility irw, with no arguments, to display the output of /dev/lircd. However,
the program socket_cat will help you understand how the Laddie appliance works,
since it uses the same approach as socket_cat to access remote control button presses.

If you’ve programmed with sockets before, the following program will
look familiar. We use the function � socket to create an unnamed, Unix
internal socket. We use the function � connect to connect to the named
socket /dev/lircd. Then we � loop forever, copying all received data to the
standard output.

#include <unistd.h> /* read, write */

#include <sys/un.h> /* sockaddr_un */

#include <sys/types.h> /* socket, connect */

#include <sys/socket.h> /* socket, connect */

#include <string.h> /* strcpy */

int main(int argc,char *argv[])

{

 int fd,i;

 char buf[128];

 struct sockaddr_un address;

 address.sun_family=AF_UNIX;

 if(argc<2){

 printf("Usage: socket_cat <unix socket path>\n");

 return;

 }

 strcpy(address.sun_path,argv[1]);

� fd=socket(AF_UNIX,SOCK_STREAM,0);

� if(connect(fd,(struct sockaddr *)&address,sizeof(address)) == -1){

 perror("Connect");

 exit(1);

 }

� for(;;){

 i=read(fd,buf,128);

 write(STDOUT_FILENO,buf,i);

 };

}

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

218 Chap te r 12

This program is on the CD at /Code/src/examples/socket_cat.c. Build
and run the program, using the following commands:

laddie:~# cd /Code/src/examples/socket_cat
laddie:~# make
laddie:~# ./socket_cat /dev/lircd

Then press a few buttons on your remote. You should see output like the
following.

0000000000000c90 00 VOL- /etc/lircd.conf

0000000000000490 00 VOL+ /etc/lircd.conf

0000000000000890 00 CH- /etc/lircd.conf

0000000000000090 00 CH+ /etc/lircd.conf

0000000000000a90 00 POWER /etc/lircd.conf

0000000000000a90 01 POWER /etc/lircd.conf

0000000000000a90 02 POWER /etc/lircd.conf

Each string includes a 16-character hexadecimal command code, a
hexadecimal repetition count, a command string, and a name for the remote
(which defaults to the name of the lircd config file). Note how, at the end
of this sequence, the repetition count increases when the POWER button is
held down continually.

The 16-character command codes are generally not useful, since all
relevant information is captured by the names of the commands and the
remote. However, it is interesting to see how the command code corresponds
to the input waveform. Note, for example, that 0xc90 is the hexadecimal
representation for the 12 bits (left to right) in the command waveform for
the Sony TV Volume– command that we saw in “Protocols for Encoding
Remote Control Commands” on page 198. When you are done with
socket_cat, press CTRL-C to terminate the program.

NOTE When a remote control button is pushed, depending on the button and the protocol, the
commands can repeat pretty quickly. For the Laddie framebuffer UI, we took advantage
of the repetition count associated with the lircd output to ignore all but the first command
associated with each button press.

LIRC Tools for Controlling Applications

As you saw in the previous section, it is simple to write a program that
responds to remote control commands via the /dev/lircd socket. But what
if you want to use a remote to control a program that already exists, but was
designed, say, for keyboard input rather than remote control input? In fact,
the LIRC package addresses this need with tools that connect to the /dev/
lircd socket and produce the kinds of output that many programs do expect.

The ircat tool is a good example because it is the simplest; it prints user-
specifiable, newline-delimited strings to the standard output when remote
control buttons are pressed. If you have a program that takes commands

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

In f ra red Remote Con trol 219

from standard input, you can control it with LIRC by piping the output of
ircat to your program. To map remote control buttons to appropriate output,
configure the file /etc/lircrc. The HTML documentation provided with the
LIRC package provides details on the format of this file.

Similarly, the LIRC package provides an irpty utility for simulating
keyboard input, an irexec utility for invoking system calls, and an irxevent
utility that generates X events (for systems running X). Again, these actions
are mapped to remote control buttons according to the /etc/lircrc file. All
of these utilities use an API called the lirc_client library to access the /dev/
lircd socket. The source code for the ircat tool provides a simple example of
how to use this library.

Finally, the LIRC package contains a daemon lircmd that uses remote
control input to emulate a mouse. This daemon connects to the /dev/lircd
socket and produces mouse events on the pipe /dev/lircm. The configura-
tion file /etc/lircmd.conf selects the protocol for X mouse events (e.g.,
IntelliMouse) and specifies how remote commands map to mouse move-
ments and button presses. The XF86Config file must be updated to include
/dev/lircm as an input device. Again, the LIRC HTML documentation
provides details.

Controlling the Laddie Appliance

For the Laddie appliance, we installed the LIRC package and configured the
lirc_serial driver and lircd daemon as described in the previous sections. Since
we built the Laddie appliance from scratch, we did not need to use LIRC tools
like ircat or irpty; instead, we wrote code similar to the socket_cat example,
which accessed the /dev/lircd socket directly.

As discussed in the previous chapter, Laddie’s framebuffer user interface
is built on the Simple DirectMedia Layer (SDL) library. Since SDL includes
its own event handler which, in particular, handles keyboard presses, it was a
simple matter to incorporate remote control events. We created a separate
lircHandler() thread to read commands from the /dev/lircd socket, parse
these commands, and then push appropriate keyboard events onto the SDL
event queue. Specifically, we responded to the Channel+/– and Volume+/–
remote control commands by simulating the SDL keypress events for the Up,
Down, Right, and Left arrow keys, respectively. We responded to the remote
control Power command with the SDL Enter keypress event. In Laddie’s SDL
event handler, we responded to these keypress events by calling navigation
commands in Laddie’s menu object. This use of the /dev/lircd output to
control Laddie’s framebuffer menu is illustrated in Figure 12-15.

Figure 12-15: Controlling the Laddie framebuffer UI

lircHandler()/dev/lircd Laddie’s SDL
Event Handler

Laddie’s
Menu Object

. . . VOL– . . . SDL Event:
SDLK_LEFT

CursorDown()

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

220 Chap te r 12

If you would like to see the details of the lircHandler() thread, you can
take a look at the /Code/src/fbmenu/lirc_if.cc file on the CD.

If you have built the IR receiver we described in this chapter and success-
fully worked through the exercises, you should be able to use it to control the
Laddie framebuffer UI. We had stopped the Laddie appliance daemons in
order to do the exercises; you will need to restart them now. Do this with the
following command:

laddie:~# laddie start

This will take a few moments, after which you should see the frame-
buffer UI. Now experiment with the buttons you programmed when you
used irrecord to create the lircd.conf file. You should be able to navigate
through the menu buttons and switch menu pages.

Summary

Infrared light is a useful means for controlling an appliance when the appli-
ance is in the line of sight. To be effective, infrared light must be modulated
by the transmitter with a signature frequency, and this modulation must be
removed by the receiver. Fortunately, there are commercial devices that
make it easy to meet these requirements. For IR receivers, we introduced
infrared detector/demodulators and showed how to use them in simple IR
receiver circuits. For IR transmitters, we recommended using universal
remotes.

We also described the Linux Infrared Remote Control (LIRC) package
as a useful tool for controlling appliances. This package provides device drivers
and daemons for measuring and interpreting infrared waveforms, as well as
utilities for controlling appliances. Although we didn’t discuss the entire
LIRC package, we did describe those elements of the package that we used
for the Laddie appliance. We hope this overview of infrared communications
and this example application of the LIRC software package will be a useful
starting point if you decide to use infrared remote control for your own
appliance.

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce

