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I N F R A R E D  R E M O T E  C O N T R O L

Remotes have become our most natural 
means of controlling certain appliances, 

and if you’re like us, you’ll occasionally spend 
several minutes trying to locate a remote control 

rather than trying to engage some device’s obscure 
front panel. In the future, we expect to see more 
appliances forfeiting the front panel altogether in favor of the keypad of a 
simple remote. Here’s a rule of thumb: If you are building an appliance that 
might be enjoyed by people while they are sitting on a couch, include a 
remote control. 

In this chapter we will cover the following topics:

� Communicating with infrared light

� Hardware for remote control receivers

� Installing and configuring LIRC for the Laddie appliance

No Starch Press, Copyright © 2007 by Bob Smith, John Hardin, Graham Phillips, and Bill Pierce



198 Chap te r 12

Communicating with Infrared Light

The infrared (IR) light used by remote controls has a wavelength close to, 
but greater than, visible light. Because it’s close to visible light, it travels in 
straight lines and reflects off of surfaces, but it doesn’t go through opaque 
objects. This limits the applications for which IR is useful. It’s good for 
controlling a set-top box, but not so good for opening a garage door, if 
there’s a solid wall between the transmitter and the receiver.

For the most part, the fact that IR is invisible is a good thing. It may be 
harder to debug something that’s invisible, but when you’re watching the 
late-night movie on your new Linux-based DVR, it’s nice to know you can 
turn down the volume without shining visible light onto the screen.

NOTE If you wish you could see the light from a remote control, perhaps to verify that a unit 
isn’t broken, you can look at it using a cell phone camera. These cameras are sensitive 
to infrared, and on cameras we’ve experimented with, they display this “color” as bright 
white.

Protocols for Encoding Remote Control Commands

In order to transfer information, a remote control transmitter and its receiver 
must use the same standard or protocol for encoding commands. A remote 
control protocol specifies the following three things:

� How it represents ones and zeros

� How these ones and zeros are combined or framed to form messages

� How these different messages are to be interpreted

Companies that build remote-controlled devices don’t generally 
publish their protocols, but it’s not hard to reverse engineer the basic 
commands, and the Internet has plenty of information from people who 
have done just that. As an example, we’ll consider a protocol Sony has 
used for some of its televisions. If you do some research on the Internet, 
you might see this protocol referred to as the Sony Integrated Remote 
Control System (SIRCS) protocol. We chose to use this protocol for the 
Laddie appliance because the protocol is easy to understand. It is also 
easy to produce: We purchased a universal remote (RCA RCU410) and 
programmed it to “Sony TV” (Code 002).

This Sony TV protocol uses pulse-coded data encoding. With this 
encoding, a bit is represented as a variable-width pulse, or presence of 
light, followed by a constant-width space, or absence of light. Based on 
our own timing measurements with our handheld remote, a zero has a 
650-microsecond pulse, a one has a 1,300-microsecond pulse, and each is 
followed by a 500-microsecond space. These encodings are illustrated in 
Figure 12-1.
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Figure 12-1: Zeros and ones in the Sony TV protocol

A frame in the Sony TV protocol (again, as measured for our particular 
remote) begins with a header consisting of a single 2,500-microsecond pulse 
followed by a 500-microsecond space. A seven-bit command immediately 
follows the header, and a five-bit address follows the command. Both the 
command and the address are transmitted with the least-significant bit (lsb) 
first. Figure 12-2 shows the waveform for the TV/Volume– command.

Figure 12-2: The TV/Volume– command in the Sony TV protocol

The address specifies a device (in our case, always 0x01 for TV), and 
the command specifies the input to that device. Table 12-1 lists some of the 
command codes for the Sony TV protocol.

For the Laddie appliance, we use the commands Channel+, Channel–, 
Volume+, Volume–, and Power. Of course, the Laddie appliance doesn’t 
really have channels or volume levels; we have simply chosen these as 
convenient inputs for the framebuffer menu navigation.

There are many other remote control protocols, and each represents a 
set of engineering trade-offs. For example, Panasonic’s REC-80 protocol uses 
constant-width pulses and encodes zeros and ones by the length of the space

Table 12-1: Device Addresses and Command 
Codes in the Sony TV Protocol

Command code Command

0x00–0x09 1–9, 0

0x10 Channel+

0x11 Channel–

0x12 Volume+

0x13 Volume–

0x15 Power

zero

650 µs 500 µs

one

1,300 µs 500 µs

2,500 µs

Header
msblsb

Address

1 1 0 0 1 0 0 1 0 0 0 0

msblsb
Command
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between pulses. This approach can lead to longer battery life because it mini-
mizes the amount of time the remote control spends emitting light. Other 
protocols save battery life by transmitting a short “Repeat” command when a 
button is held down, rather than repeatedly transmitting the entire command, 
as the Sony TV protocol does. 

NOTE To learn about some of these other protocols, visit http://sbprojects.com/knowledge/ir/
ir.htm.

Reducing Interference by Modulating the Infrared Signal
So far, we’ve treated infrared pulses as if they corresponded to steady beams 
of light. But consider Figure 12-2, and suppose that some flickering light 
bulb were to generate pulses of IR that overlapped some of the spaces in a 
message. Clearly, such interference could make it impossible for a receiver to 
correctly interpret the message. The solution is to modulate the pulses of IR 
light. In a modulated pulse, the IR light is actually turning on and off at a 
fixed frequency, typically between 30 and 60 kHz (kilohertz). Like picking 
out a voice in a crowded room, the receiver can use this frequency as a 
signature to discriminate the intended signal from the background noise. 
Because of this modulation, the pulse-coded zeros and ones of the Sony TV 
protocol are more accurately depicted as in Figure 12-3.

Figure 12-3: Modulated pulses in the Sony TV protocol

We measured the modulation frequency for our remote as roughly 
40 kHz. Thus, for our remote, the zero “pulse” in Figure 12-3 actually 
consists of 40,000 * 0.000650 = 26 much shorter pulses.

Controlling an Appliance with Infrared Light
Now that we’ve seen how infrared light can convey information, we can design 
a system for implementing remote control of an application. Figure 12-4 
illustrates such a system.

Figure 12-4: A complete remote control system
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On the transmitting side, a typical handheld remote control performs 
the following steps:

1. It scans a keypad.

2. It encodes the input as a waveform according to some protocol.

3. It modulates this encoding with a frequency between 30 and 60 kHz.

4. It emits a corresponding pattern of infrared light.

On the receiving side, a typical IR receiver performs the following stages:

5. An infrared detector converts the input signal to a voltage waveform.

6. A demodulator removes the 30 to 60 kHz modulation.

7. A decoder analyzes this waveform and determines the corresponding 
command.

8. An application responds appropriately to this input.

Hardware for Remote Control Receivers

In this section we’ll focus on IR receiver hardware. Designing remote control 
transmitters is beyond the scope of this chapter, but our recommendation is 
to take the same approach we took with the Laddie appliance: Use an off-the-
shelf, universal remote.

Detecting and Demodulating the IR Signal

The two stages of detecting and demodulating an IR input can be handled 
by a single, commercial, off-the-shelf component. Figure 12-5 shows three 
examples of this part, all produced by Sharp Microelectronics.

Figure 12-5: Infrared detector/demodulators
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For the Laddie appliance, we chose the 40 kHz unit from Sharp’s 
GP1UV70QS series (pictured on the right in Figure 12-5). Also popular is 
the TSOP17XX series from Vishay. Each of these parts is easy to use with 
perfboard or solderless breadboard prototyping materials. Each requires a 
5V power supply and provides an output corresponding to the demodulated 
IR waveform (see step 6 in Figure 12-4). When evaluating a particular device, 
make sure the demodulation frequency is appropriate for your chosen 
protocol. For low-power applications, you’ll also want to compare the 
power requirements for different devices.

There isn’t a standard nomenclature for these devices. When you’re 
searching for information, expect to see names like “IR Remote Receiver,” 
“Photo Module for Remote Control,” or “Infrared Detecting Unit for Remote 
Control.” In the remainder of this chapter, we’ll refer to them as infrared 
detector/demodulators to emphasize the two functions they provide.

B U I LD I N G  A  S I M P L E  I R  D E T E C T O R

If you have access to an oscilloscope and would like to see a remote control signal 
before it is demodulated, you can build the simple IR detector circuit depicted in 
Figure 12-6. All you need is a power supply (a 9V battery is fine), an appropriately 
valued resistor, and a phototransistor.

Figure 12-6: A simple IR detector

You’ll want to choose the resistor so that the output voltage is about half of the 
supply voltage when the remote control is off. When we tried this, we used a 100K 
resistor, and we held the remote control very close to the detector. We had good 
results both with a Radio Shack infrared phototransistor (catalog number 276-142) 
and when using another, unidentified, phototransistor we happened to have lying 
around. The output will be weak, but it should be adequate for an oscilloscope. By 
the way, this experiment is also useful if you need to determine the modulation 
frequency for an unfamiliar protocol.

Resistor

V+

Output Voltage

Infrared Light

Phototransistor
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Decoding Remote Control Waveforms
In the previous section we introduced off-the-shelf devices that will respond 
to a remote control IR signal and produce a demodulated voltage waveform. 
Before designing a circuit to take advantage of these devices, we need to 
decide how we will decode that waveform. Decoding can be broken into 
two steps: measuring the timing of the pulses and spaces that comprise a 
waveform and interpreting this sequence of timings to identify the intended 
message. We have three options for designing a decoder, depending on 
which of these two tasks we assign to external hardware and which we assign 
to the appliance’s processor. We’ll briefly discuss these three options before 
describing the approach we took for the Laddie appliance.

Measuring and Interpreting in External Hardware

It’s possible to build receiver hardware that performs all of the decoding 
tasks: measuring the waveform, determining the corresponding command, 
and then transmitting that command as one or more serial bytes to the 
appliance’s processor. Figure 12-7 illustrates this approach. Here, the receiver 
has recognized the waveform for the Volume– command and has produced 
the single ASCII character D for down.

Figure 12-7: Decoding waveforms in external hardware

The website http://linuxtoys.org/xirrc/xirrc.html describes an example 
of this approach in which a preprogrammed Microchip PIC microcontroller 
is used to decode Sony remote control commands and transmit command 
characters to a serial port.

A limitation of this approach is that the receiver supports only one remote 
control protocol. On the positive side, this approach makes it incredibly easy 
to add remote control to your appliance. Just plug in the receiver and listen 
for commands on the serial port.

Measuring in Hardware and Interpreting on the Appliance

In order to accommodate any remote control protocol, we can build receiver 
hardware that measures waveforms but passes the timing information to the 
appliance’s processor for interpretation. Figure 12-8 illustrates an approach 
in which the timing of the pulses and spaces is encoded as a series of bytes, 
each representing time in 50-microsecond increments. 

Figure 12-8: Measuring waveform timing in external hardware

650 µs 500 µs1,300 µs 500 µs
Infrared
Receiver D. . . . . .

Infrared
Receiver . . . 26 10 13 10 . . .

650 µs 500 µs1,300 µs 500 µs

. . . . . .
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Since the appliance is given a complete representation of the input wave-
form, it can, in theory, decode waveforms for any protocol. The LIRC website 
provides a link for a protocol called Universal Infrared Remote Transceiver, 
second version (UIRT2), which works out the details of this approach. It is 
described at http://users.skynet.be/sky50985.

As a related example, the Irman remote control receiver, available at 
http://www.evation.com/irman/index.html, takes an innovative approach 
and encodes any remote control command waveform by creating “pseudo-
random” signatures of six bytes. Irman works on the assumption that different 
waveforms from a given remote will almost invariably have different signatures. 
Because this technique applies to any waveform, this type of receiver can 
work with any of the common remote control protocols, but the user has to 
train it to interpret the signatures it derives.

As a third example, the LIRC website refers to the USB-IR-Boy project. 
This project uses the inexpensive Freescale MC68HC908JB8 microcontroller 
with built-in USB support to provide IR waveform timing values. It also 
includes a Linux device driver to make these timing values available via the 
/dev/usbirboy device file. Information is available at http://usbirboy
.sourceforge.net.

Measuring and Interpreting on the Appliance

The third approach to decoding waveforms is appealing because of its simple 
hardware requirements. All the hardware has to do is power an infrared 
detector/demodulator and provide the signal as an input to the appliance’s 
processor. On the negative side, this method does place extra demands on 
the processor. Specifically, the processor must respond to an interrupt every 
time the input signal transitions high or low in order to measure timing 
information. Nevertheless, because of the simple hardware requirements, 
we have chosen this third approach for the Laddie appliance. In the next 
section we will work through the details of building this kind of receiver.

Infrared Remote Control Hardware for the Laddie Appliance

If you’re not comfortable with building hardware, you might seek out a friend 
who is, or—this is our recommendation—jump in and build it yourself anyway. 
It’s a good first project and a satisfying one because of the new mode of control 
it gives you for your Linux projects. You will certainly find the remainder of 
this chapter more educational if you have hardware to experiment with.

To integrate our simple IR receiver with an appliance, we need two 
things: a power source for the IR detector/demodulator and an input that 
generates interrupts. The good news is that a typical serial port satisfies 
both requirements. The output pins on a serial port provide adequate 
power, and its Data Carrier Detect (DCD) input pin generates interrupts. 
The bad news is that the serial port output voltages range from 3.7V to 12V 
on the positive side and from 3.7V to 12V on the negative side. Moreover, 
the serial port inputs require a swing between these same positive and 
negative ranges. An IR detector, however, expects a clean 5V power supply 
(for some parts, 3.3V); it outputs a 0V to 5V signal (for some parts, 0V to 
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3.3V). Thus, if you want to use a serial port input, you will need additional 
circuitry to provide the required voltage for the detector and to shift the 
detector output to valid serial port levels. Figure 12-9 illustrates this kind of 
circuit.

Figure 12-9: A block diagram for a simple IR receiver

Here we assume the serial port has been configured to keep the Request 
to Send (RTS) output at a high voltage level and the Transmit Data (TXD) 
output at a low voltage level. The 5V regulator provides the voltage required 
by the detector. The level shifter provides the correct voltage levels to the 
DCD input. 

NOTE If you look at IR receiver circuits presented on the Web, you’ll find some that take a 
simpler approach, omitting the level-shifter and providing an output that swings 
between 0V and 5V. This may work for your computer. If not, or if you want a more 
robust solution, take the approach we’ve chosen here.

Figure 12-10 shows the schematic we chose for the Laddie IR receiver.

Figure 12-10: The IR receiver schematic used for the Laddie appliance

Here, U1 is an off-the-shelf IR detector/demodulator, U2 is a linear 
voltage regulator that provides 5V to U1, and the transistor/resistor circuit is 
the level-shifter that provides an output appropriate for the serial port. The 
diode, D1, protects the circuit in case the RTS signal is improperly initialized, 
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which may cause it to go negative relative to TXD. Table 12-2 provides the 
specific parts that we’ve used, with their approximate costs. Where we’ve listed 
multiple parts, you can assume they are interchangeable. Between Digi-Key 
(http://www.digikey.com) and Jameco Electronics (http://www.jameco.com), 
you shouldn’t have any trouble finding these parts.

Figure 12-11 shows a few of our prototypes. We recommend starting with 
a solderless breadboard and 22 AWG solid (non-stranded) wire, as pictured 
on the left. You’ll also need a wire stripper for the 22 AWG wire and a volt-
meter for debugging. The one place you’ll want to use a soldering iron is to 
connect wires to the DB9 serial connector. In the left picture, two wires from 
the DB9 connector provide power and ground to the strips along the edges 
of the breadboard. The third wire provides the DCD signal back to the 
computer via the serial cable.

Figure 12-11: Two prototypes for an infrared remote receiver

Table 12-2: Parts List for the Laddie Appliance’s IR Receiver

Ref Part Cost Description

U1 Sharp GP1UV701QS, 
GP1UV70QS, GP1UW701QS, 
GP1UW700QS

$1.50 Infrared detector/demodulator

U2 LM78L05, LP2950CZ5 $0.80 5V linear voltage regulator

C1 0.47 uF or higher $0.15 Electrolytic capacitor

C2 0.47 uF or higher $0.15 Electrolytic capacitor

D1 1N4148, BAT46 $0.35 Diode

R1 220K, ¼ watt $0.06 Resistor

R2 100K, ¼ watt $0.06 Resistor

T1, T2 PN2222A, 2N3904 $0.20 NPN transistor

T3 PN2907A, 2N3906 $0.20 PNP transistor

CONN1 DB9 socket $0.50 9-pin d-sub serial connector, female
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Once you have a working circuit, you can build something more perma-
nent using perfboard and a plastic enclosure. In the picture on the right, 
only one side of the enclosure is shown. We drilled a hole at one side for 
the IR detector/demodulator and cut a hole on the other side for the DB9 
connector. A piece of cardboard holds the detector/demodulator in place.

When building your prototype, follow these steps to make sure the 
circuit is operating properly:

1. Build the circuit, but don’t connect the serial port or the IR detector/
demodulator. In place of the RTS and TXD pins, use a 9V battery for 
power. Use the positive battery terminal in place of the RTS input and 
the negative terminal in place of the TXD input.

2. Verify that the voltage between the regulator output and the negative 
battery terminal is 5V.

3. Verify that the voltage between the circuit output and the negative bat-
tery terminal is at least 8V. (The “circuit output” is the point that you will 
later connect to the DCD pin of the serial port.) 

4. Now connect the open end of R1 to the 5V output of the regulator, and 
verify that the voltage between the circuit output and the negative bat-
tery terminal is zero volts.

5. Finally, complete the circuit by adding the IR detector/demodulator 
and connecting your computer’s serial port.

The remaining tests for your IR receiver hardware require the LIRC 
software. In the next section, we’ll introduce the LIRC software package and 
describe how we incorporated it into the Laddie appliance.

Installing and Configuring LIRC for the Laddie Appliance

The LIRC software package can be downloaded from http://www.lirc.org; it 
includes an extensive collection of device drivers, daemons, and tools for 
controlling user applications with remote control hardware. We don’t have 
room to cover all of these elements here, but we will present the layers that 
make up this software architecture, and we will describe in detail the 
particular device driver and daemon that are appropriate for the Laddie 
appliance. Once you’ve understood this subset, you should find it easy to 
master any other parts of the architecture required for your own appliance.

Figure 12-12 provides a high-level view of the LIRC software architecture 
as it applies to the Laddie appliance. At the right of the diagram, we’ve 
shown how elements of the LIRC architecture correspond to our earlier, 
more general discussion of IR receivers.
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Figure 12-12: The LIRC architecture

In kernel space, a device driver accesses the receiver hardware through an 
external port. For our appliance, this driver is provided by the LIRC package 
and uses interrupts to perform waveform timing on the input waveform. 

NOTE As you saw in the section “Decoding Remote Control Waveforms” on page 203, there 
are some IR receivers that perform the waveform timing and possibly even the waveform 
interpretation in external hardware. For these receivers, the kernel device driver may be 
a generic Linux serial driver or a USB driver.

In user space, for systems such as ours that don’t perform interpretation in 
external hardware, we use the lircd daemon. This daemon accesses a config-
uration file that characterizes the remote control’s command protocol and 
analyzes the timing information provided by the device driver to generate the 
corresponding commands. In some cases, the user application will access the 
output of the lircd daemon directly. The Laddie appliance takes this approach. 
For applications that were not built with the lircd daemon in mind, several 
LIRC tools are available to process the output of the lircd daemon and 
provide program input, execute appropriate commands, or simulate mouse 
or keyboard events. We’ll discuss these tools later in the section “LIRC Tools 
for Controlling Applications” on page 218.

In the remainder of this chapter, we will describe in detail the elements 
of the LIRC architecture and show how we configured LIRC for the Laddie 
appliance.

Installing the LIRC Software

The LIRC package is included on this book’s companion CD, and we 
recommend you use the CD when working through the examples in this 
chapter. However, if you need to set up your own system in the future, we 
will describe the steps we took to install the package. 
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We downloaded version lirc-0.8.1 from http://www.lirc.org and installed 
it with these commands:

./setup.sh

./configure --with-kerneldir=/usr/src/linux-2.6.10 --with-driver=serial

make

make install

The setup.sh script asked us to make choices about our installation. 
Under the Driver Configuration (driver:serial io:0x3f8 irq:4) menu, we chose 
the Home-brew (16x50 UART compatible serial port) driver, selected COM1 
(0x3f8, 4) for the base address and IRQ, and disabled all driver-specific 
options. Under the Software Configuration menu, we disabled all options. 
Then we selected Save Configuration and exit.

LIRC is a package that allows you to decode and send IR and other signals 
of many (but not all) commonly used remote controls. It includes daemons 
that decode the received signals as well as user space applications that allow 
controlling a computer with a remote control.

The ./configure --help command provided a long list of driver choices, as 
well as a dauntingly long list of configuration options. For our appliance, the 
defaults were generally appropriate. We only needed to provide the location 
of our Linux kernel source tree using the --with-kerneldir option and to 
specify the serial driver with the --with-driver option.

Figure 12-13 shows how representative components installed by the LIRC 
package fit into the LIRC software architecture. Although the LIRC package 
includes utilities that support the X Window System, we don’t show them here, 
since the Laddie appliance doesn’t use X.

Figure 12-13: Components of the LIRC package
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Before we dive into the details, let’s start with a quick, bottom-to-top tour 
and explain how the LIRC receiver controls the Laddie appliance’s frame-
buffer UI, which is described in Chapter 11. The IR receiver external hardware 
provides the remote control waveform to the DCD pin of a serial port. In 
kernel space, the lirc_serial device driver (one of many included in the LIRC 
package) monitors this pin and produces a binary stream of timing data via 
the device file /dev/lirc. In user space, the lircd daemon analyzes the timing 
data from the /dev/lirc device file to provide a sequence of command strings 
on the Unix socket /dev/lircd. The framebuffer UI connects directly to this 
socket in order to respond to user input.

Now for all the details we left out. In the remainder of this section, we will 
look more carefully at each of the layers of the LIRC software architecture.

Configuring the lirc_serial Kernel Device Driver

The lirc_serial device driver is actually implemented by two kernel modules, 
lirc_serial.ko and lirc_dev.ko, which were placed in the directory /lib/
modules/2.6.10/misc/ when we installed the software. In order to use 
these modules, we had to perform three additional steps: free up a serial 
port, create a device file, and load the modules into the kernel. We created 
a startup script, lircd, to perform these steps. We will review the steps here; 
you can see the complete code on the CD in the /etc/rc.d/init.d directory.

Freeing Up a Serial Port

For the Laddie appliance’s IR receiver input port, we chose COM1 (/dev/
ttyS0). The Linux kernel typically enables COM1 through COM4 as serial 
ports at startup; thus, we needed to free up COM1 for LIRC. To do this, we 
used the setserial command:

setserial /dev/ttyS0 uart none

By setting the type of the hardware (the UART) to none, this command 
disabled the specified port.

NOTE UART stands for Universal Asynchronous Receiver Transmitter. A UART handles the 
low-level implementation of a serial link so that the CPU need only be concerned with 
providing bytes to transmit and processing bytes that are received.

For the remainder of this chapter, we recommend that you boot the 
Laddie appliance using the Laddie CD and follow along with the exercises. 
After booting the CD, exit the framebuffer UI (press ESC), and log in as root 
with an empty password. Verify that port COM1 was configured properly by 
executing the following command at the laddie:~# prompt:

laddie:~# setserial /dev/ttyS0
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You should see the following output:

/dev/ttyS0, UART: unknown, Port: 0x03f8, IRQ: 4

The UART type is unknown, which means the port is available.

Creating a Device File

You may recall from the previous chapter that we used a device file /dev/fb0 
to expose the framebuffer functionality. Similarly, we had to provide a device 
file to expose the lirc_serial functionality. The following code created the 
character device file /dev/lirc with major number 61 and minor number 0, 
as required for the lirc driver.

mknod /dev/lirc c 61 0

With the Laddie CD, verify that the /dev/lirc device file exists by using 
the command:

laddie:~# ls -l /dev/lirc

You should see the output:

�crw-------  1 root root �61, �0 2007-01-27 08:03 /dev/lirc

This indicates that the file represents a character device that is �
readable and writable by root, � with major number 61, and � with minor 
number 0.

Loading the lirc_serial Modules into the Kernel

With the serial port available and the device file in place, we were able to 
load the lirc_serial device driver using the modprobe command:

modprobe lirc_serial

To verify that the lirc_serial device driver is loaded, execute the 
following:

laddie:~# lsmod | grep lirc

You should see output like this:

lirc_serial            13152  1
�lirc_dev            14804  1 �lirc_serial

The first column shows the loaded modules; the fourth column shows 
dependencies. Here we see that � the lirc_serial module depends on � the 
lirc_dev module.
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NOTE If we had wanted to use a different port than COM1 for our IR receiver, we would 
have provided additional arguments to the lirc_serial driver with the modprobe com-
mand. To specify COM2, we would have used the command modprobe lirc_serial 
irq=3 io=0x2f8. The default irq and io values for COM3 and COM4 are (4, 0x3e8) 
and (3, 0x2e8), respectively.

Testing the lirc_serial Driver

Now that we’ve verified that the lirc_serial driver is loaded properly, we can 
use the Laddie CD to test the IR receiver hardware we built earlier. We’ll 
begin by reviewing what we want to test.

Recall that the signal provided by our LIRC receiver looks something 
like Figure 12-14 (at least in the case of a Sony TV Volume– command).

Figure 12-14: Waveform for the Sony TV Volume– command

The job of the lirc_serial kernel device driver is to measure the timing of 
spaces and pulses in this signal and provide that information via a device file. 
The particular waveform shown here complies with the Sony TV protocol, 
but the lirc_serial driver is designed to work with any protocol. The driver 
includes an interrupt handler that is invoked every time the DCD pin changes 
state. The handler uses a system timer to measure the pulses and spaces in 
microseconds, and then it emits this timing information via the /dev/lirc 
device file as a sequence of 32-bit words. In each word, bits 0 through 23 
specify the length of the space or pulse in microseconds (with a maximum 
value of 0xFF FFFF). Bit 24 is zero for a space and one for a pulse. Bits 25 
through 31 are always zero. To test the lirc_serial device driver, we’d like to 
verify that these values are generated when we press a remote control button.

Before we can access the /dev/lirc device file, we need to make sure 
it’s not already in use by some other process. When the Laddie CD boots, it 
launches the lircd daemon in order to support the framebuffer UI. Since 
the lircd daemon accesses /dev/lirc, we prepare for our test by killing that 
process.

Execute the following commands at the Laddie appliance command 
prompt:

laddie:~# laddie stop
laddie:~# kill $(pidof lircd)

2,500 µs

Header
msblsb

Address

1 1 0 0 1 0 0 1 0 0 0 0

msblsb
Command
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After the first command, you will need to wait a few moments for the 
Laddie application to stop. In the second command, the pidof function out-
puts the process ID of the lircd process. The $(...) construct provides this 
output as a parameter to the kill command, which terminates the specified 
process. We can now access the /dev/lirc device file for our own purposes.

As we saw in the previous chapter, we can use the cat command to 
access output that is provided via device files. Now we don’t want to simply 
cat the output of /dev/lirc to the console, because some of the output data 
might be interpreted as control characters and the console could end up 
in an unusable state. One thing we can do is pipe that output through the 
hexdump utility, which translates binary data into printable ASCII hexadecimal 
characters.

Enter the following command:

laddie:~# cat /dev/lirc | hexdump

Now, any pulses that arrive on the DCD pin of serial port COM1 will be 
measured by the lirc_serial device driver, read by the cat command via the 
/dev/lirc device file, and displayed in ASCII hex by hexdump. To generate 
such pulses, connect your IR receiver to the COM1 port, point your remote 
control at the IR detector/demodulator, and press a button. (At this point, 
the particular kind of remote doesn’t matter.) If everything is working 
properly, you should see output like the following:

0000000 df67 0061 099d 0100 01fb 0000 04f6 0100

0000010 0216 0000 04fd 0100 01fa 0000 026e 0100

0000020 022d 0000 028a 0100 01fb 0000 04f7 0100

0000030 01fd 0000 02a1 0100 01fa 0000 02a0 0100

0000040 01fb 0000 04fc 0100 01fb 0000 02a0 0100

0000050 01fa 0000 0283 0100 0218 0000 0289 0100

This is the output we generated by briefly tapping the Volume– button 
on the universal remote that we programmed for Sony TV.

If you’re not sure your IR receiver hardware is working (or if you don’t 
have an IR receiver at this point), you can still test the lirc_serial device driver 
by creating random pulses on the DCD pin of the serial port. One way to do 
this is to intermittently connect pin 1 (DCD) to pin 7 (RTS) of the serial 
port. If this doesn’t produce a result, try intermittently connecting pin 1 to 
pin 3 (TXD). If your computer’s serial port is built to standard specifications, 
it won’t be a problem if you connect the wrong pins by mistake. Still, if you’ve 
just purchased a fancy, new laptop, you might want to try this experiment on 
a friend’s Linux box first.

Using the cat /dev/lirc | hexdump command is a good exercise because it 
demonstrates that the output of /dev/lirc is simply binary data that can be 
read like a file. Neither cat nor hexdump know anything about infrared, yet 
they display the data just fine. But the output of hexdump isn’t easy to read. 
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Fortunately, the LIRC package includes a utility, mode2, that does understand 
the output of the lirc_serial driver and can display it as pulse and space 
timing data.

Press CTRL-C to terminate the previous command, and execute the 
following one:

laddie:~# mode2

Now point an IR remote control at the receiver while pressing buttons. 
The command mode2 reads the output of /dev/lirc, parses the 23-bit timing 
data and the one-bit pulse or space indicator, and produces a stream of pulse 
and space timing information. As an example, we observed the following 
train of space and pulse timings from mode2 when we stimulated our IR 
receiver with a single Sony TV Volume– command. 

If you refer to “Protocols for Encoding Remote Control Commands” 
on page 198, you will notice that these timing values are noisier than the 
idealized waveform would suggest. The first pulse is roughly 2,500 milli-
seconds and corresponds to the header. The other pulses are roughly 1,300 
or 650 milliseconds, corresponding to ones and zeros, respectively. The spaces 
are roughly 500 milliseconds, but note the large initial space value corre-
sponding to the time between button presses. It is the job of the lircd daemon 
to reject the pulse trains that do not correspond to valid waveforms and to 
correctly interpret the ones that do. When you are finished experimenting 
with mode2, press CTRL-C to terminate the utility.

At this point, we have established that the lirc_serial device driver is 
working. In the next section we will provide instructions on configuring the 
lircd daemon, which will use the output of this device driver.

NOTE If you would like to write a program that uses the output of the lirc_serial device driver 
directly, the source code for the mode2 utility provides an example of how to access the 
/dev/lirc device file. This source is available from http://www.lirc.org and is also 
provided in the lirc-0.8.1.tar.bz2 tarball in the /usr/src/packages/ directory of this 
book’s companion CD.

laddie:~# mode2 space 568 pulse 1265

space 5794213 pulse 663 space 517

pulse 2471 space 494 pulse 663

space 496 pulse 1260 space 516

pulse 1282 space 497 pulse 633

space 546 pulse 685 space 546

pulse 1263 space 518 pulse 639

space 517 pulse 661 space 496

pulse 611 space 515 pulse 682
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Configuring the lircd Daemon

The cleverest part of the LIRC package is the lircd daemon. This is the part 
that analyzes the noisy timing values coming from the /dev/lirc device file 
and produces a sequence of commands that are easily parsed by downstream 
LIRC tools or user applications.

In order for the lircd daemon to interpret the timing data from /dev/
lirc, it has to understand the remote control protocol. The configuration 
file /etc/lircd.conf captures this protocol information. The following is the 
lircd.conf file used by the Laddie appliance with comments and a few of the 
button entries removed to save space.

begin remote

  name      SONY-TV

  bits           12

  flags   SPACE_ENC

  eps            30

  aeps          100

  header       2457   525

  one          1269   520

  zero          650   520

  gap         26076

  toggle_bit      0

      begin codes

          POWER                    0xA90

          ENTER                    0xD10

          VOL-                     0xC90

          VOL+                     0x490

          CH-                      0x890

          CH+                      0x090

      end codes

end remote

You don’t need to understand the entries in this file to use LIRC, but 
we’ll make a few comments here in case you want to edit the file manually. 
The name can be any string you like that describes the remote. The bits field 
is the total number of data bits (in our case, command-code bits plus address 
bits). The eps and aeps fields represent relative and absolute error tolerances 
(in our case, 30 percent and 100 microseconds). The header, one, and zero
fields represent the pulse and space timings (in microseconds) for the header 
and data bits. There is a gap of about 26,000 microseconds between repeated 
commands, and there is no toggle bit that changes for repeated commands. 
Note that these fields reflect actual timings measured by the device driver 
and can vary from the protocol standard. The codes are the actual data bit 
sequences for the various commands. For the additional fields that may apply 
for other remotes, you can see the details at the WinLIRC web page, http://
winlirc.sourceforge.net/technicaldetails.html.
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If you have a remote that uses the same protocol as ours, you should be 
able to control the Laddie appliance without updating the /etc/lircd.conf 
file. (Again, we are using an RCA RCU410 universal remote, programmed as 
a Sony TV, code 002.) The LIRC website also provides configuration files for 
many remotes, but using the LIRC irrecord utility, it’s easy enough to generate 
these files from scratch. The irrecord utility creates configuration files by 
monitoring the output of /dev/lirc while prompting the user for remote 
control input.

Now let’s create a configuration file for your remote. As we mentioned 
when we were testing the lirc_serial device driver, we need to kill the lircd 
daemon before we access /dev/lirc. If you didn’t kill lircd earlier, do so now: 

laddie:~# kill $(pidof lircd)

To create a new lircd configuration file, rename or delete the old one, 
then run the irrecord command:

laddie:~# mv /etc/lircd.conf /etc/lircd.conf.bak
laddie:~# irrecord /etc/lircd.conf

Read the instructions printed by the irrecord utility carefully. The utility 
will prompt you to press remote control buttons in a particular sequence, and 
it will also ask you to assign names for the buttons you choose to program. 
Since you will be using the remote to control the Laddie framebuffer UI, 
you will need to provide the button names that the Laddie appliance expects. 
It doesn’t matter how you assign the actual buttons, but you will need to 
use the following names in uppercase letters: POWER, VOL+, VOL–, CH+, 
and CH–. If you restart the irrecord utility, be sure to rename or delete the 
previous /etc/lircd.conf file first. Once you’re satisfied with the configuration 
file, you are ready to test the lircd daemon.

NOTE If you choose to download a configuration file for your remote from http://www.lirc.org, 
you will need to edit it to make sure the button names are the ones the Laddie appliance 
expects. Keep in mind that any updated configuration files will be replaced with the 
original files when you reboot the Laddie CD.

Testing the lircd Daemon

To use your new lircd configuration file, start the lircd daemon with the 
command:

laddie:~# lircd

This command will complete immediately without printing anything. To 
verify that the daemon is running, execute the command: 

laddie:~# pidof lircd
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and verify that it returns an integer. The lircd daemon will read timing data 
from the /dev/lirc device file and, using the configuration specified in /etc/
lircd.conf, provide button-press information at the Unix socket /dev/lircd in 
the form of newline-delimited ASCII strings.

Unix sockets are different from regular files or device files. In particular, 
you can’t use the system call open() to access them; you have to use connect()
instead. This means that we can’t simply use cat to examine the output of 
/dev/lircd the way we did with /dev/lirc. Let’s write a simple program, 
socket_cat, that does allow us to view this output.

NOTE If you are eager to test the lircd daemon and would rather skip this exercise, you can use 
the LIRC utility irw, with no arguments, to display the output of /dev/lircd. However, 
the program socket_cat will help you understand how the Laddie appliance works, 
since it uses the same approach as socket_cat to access remote control button presses.

If you’ve programmed with sockets before, the following program will 
look familiar. We use the function � socket to create an unnamed, Unix 
internal socket. We use the function � connect to connect to the named 
socket /dev/lircd. Then we � loop forever, copying all received data to the 
standard output. 

#include <unistd.h>             /* read, write */

#include <sys/un.h>             /* sockaddr_un */

#include <sys/types.h>          /* socket, connect */

#include <sys/socket.h>         /* socket, connect */

#include <string.h>             /* strcpy */

int main(int argc,char *argv[])

{

  int fd,i;

  char buf[128];

  struct sockaddr_un address;

  address.sun_family=AF_UNIX;

  if(argc<2){

    printf("Usage: socket_cat <unix socket path>\n");

    return;

  }

  strcpy(address.sun_path,argv[1]);

� fd=socket(AF_UNIX,SOCK_STREAM,0);

� if(connect(fd,(struct sockaddr *)&address,sizeof(address)) == -1){

    perror("Connect");

    exit(1);

  }

� for(;;){

    i=read(fd,buf,128);

    write(STDOUT_FILENO,buf,i);

  };

}
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This program is on the CD at /Code/src/examples/socket_cat.c. Build 
and run the program, using the following commands:

laddie:~# cd /Code/src/examples/socket_cat
laddie:~# make
laddie:~# ./socket_cat /dev/lircd

Then press a few buttons on your remote. You should see output like the 
following.

0000000000000c90 00 VOL- /etc/lircd.conf

0000000000000490 00 VOL+ /etc/lircd.conf

0000000000000890 00 CH- /etc/lircd.conf

0000000000000090 00 CH+ /etc/lircd.conf

0000000000000a90 00 POWER /etc/lircd.conf

0000000000000a90 01 POWER /etc/lircd.conf

0000000000000a90 02 POWER /etc/lircd.conf

Each string includes a 16-character hexadecimal command code, a 
hexadecimal repetition count, a command string, and a name for the remote 
(which defaults to the name of the lircd config file). Note how, at the end 
of this sequence, the repetition count increases when the POWER button is 
held down continually.

The 16-character command codes are generally not useful, since all 
relevant information is captured by the names of the commands and the 
remote. However, it is interesting to see how the command code corresponds 
to the input waveform. Note, for example, that 0xc90 is the hexadecimal 
representation for the 12 bits (left to right) in the command waveform for 
the Sony TV Volume– command that we saw in “Protocols for Encoding 
Remote Control Commands” on page 198. When you are done with 
socket_cat, press CTRL-C to terminate the program. 

NOTE When a remote control button is pushed, depending on the button and the protocol, the 
commands can repeat pretty quickly. For the Laddie framebuffer UI, we took advantage 
of the repetition count associated with the lircd output to ignore all but the first command 
associated with each button press.

LIRC Tools for Controlling Applications

As you saw in the previous section, it is simple to write a program that 
responds to remote control commands via the /dev/lircd socket. But what 
if you want to use a remote to control a program that already exists, but was 
designed, say, for keyboard input rather than remote control input? In fact, 
the LIRC package addresses this need with tools that connect to the /dev/
lircd socket and produce the kinds of output that many programs do expect.

The ircat tool is a good example because it is the simplest; it prints user-
specifiable, newline-delimited strings to the standard output when remote 
control buttons are pressed. If you have a program that takes commands 
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from standard input, you can control it with LIRC by piping the output of 
ircat to your program. To map remote control buttons to appropriate output, 
configure the file /etc/lircrc. The HTML documentation provided with the 
LIRC package provides details on the format of this file.

Similarly, the LIRC package provides an irpty utility for simulating 
keyboard input, an irexec utility for invoking system calls, and an irxevent 
utility that generates X events (for systems running X). Again, these actions 
are mapped to remote control buttons according to the /etc/lircrc file. All 
of these utilities use an API called the lirc_client library to access the /dev/
lircd socket. The source code for the ircat tool provides a simple example of 
how to use this library.

Finally, the LIRC package contains a daemon lircmd that uses remote 
control input to emulate a mouse. This daemon connects to the /dev/lircd 
socket and produces mouse events on the pipe /dev/lircm. The configura-
tion file /etc/lircmd.conf selects the protocol for X mouse events (e.g., 
IntelliMouse) and specifies how remote commands map to mouse move-
ments and button presses. The XF86Config file must be updated to include 
/dev/lircm as an input device. Again, the LIRC HTML documentation 
provides details.

Controlling the Laddie Appliance

For the Laddie appliance, we installed the LIRC package and configured the 
lirc_serial driver and lircd daemon as described in the previous sections. Since 
we built the Laddie appliance from scratch, we did not need to use LIRC tools 
like ircat or irpty; instead, we wrote code similar to the socket_cat example, 
which accessed the /dev/lircd socket directly.

As discussed in the previous chapter, Laddie’s framebuffer user interface 
is built on the Simple DirectMedia Layer (SDL) library. Since SDL includes 
its own event handler which, in particular, handles keyboard presses, it was a 
simple matter to incorporate remote control events. We created a separate 
lircHandler() thread to read commands from the /dev/lircd socket, parse 
these commands, and then push appropriate keyboard events onto the SDL 
event queue. Specifically, we responded to the Channel+/– and Volume+/– 
remote control commands by simulating the SDL keypress events for the Up, 
Down, Right, and Left arrow keys, respectively. We responded to the remote 
control Power command with the SDL Enter keypress event. In Laddie’s SDL 
event handler, we responded to these keypress events by calling navigation 
commands in Laddie’s menu object. This use of the /dev/lircd output to 
control Laddie’s framebuffer menu is illustrated in Figure 12-15.

Figure 12-15: Controlling the Laddie framebuffer UI

lircHandler()/dev/lircd Laddie’s SDL
Event Handler

Laddie’s
Menu Object

. . . VOL– . . . SDL Event:
SDLK_LEFT

CursorDown()
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If you would like to see the details of the lircHandler() thread, you can 
take a look at the /Code/src/fbmenu/lirc_if.cc file on the CD.

If you have built the IR receiver we described in this chapter and success-
fully worked through the exercises, you should be able to use it to control the 
Laddie framebuffer UI. We had stopped the Laddie appliance daemons in 
order to do the exercises; you will need to restart them now. Do this with the 
following command:

laddie:~# laddie start

This will take a few moments, after which you should see the frame-
buffer UI. Now experiment with the buttons you programmed when you 
used irrecord to create the lircd.conf file. You should be able to navigate 
through the menu buttons and switch menu pages. 

Summary

Infrared light is a useful means for controlling an appliance when the appli-
ance is in the line of sight. To be effective, infrared light must be modulated 
by the transmitter with a signature frequency, and this modulation must be 
removed by the receiver. Fortunately, there are commercial devices that 
make it easy to meet these requirements. For IR receivers, we introduced 
infrared detector/demodulators and showed how to use them in simple IR 
receiver circuits. For IR transmitters, we recommended using universal 
remotes.

We also described the Linux Infrared Remote Control (LIRC) package 
as a useful tool for controlling appliances. This package provides device drivers 
and daemons for measuring and interpreting infrared waveforms, as well as 
utilities for controlling appliances. Although we didn’t discuss the entire 
LIRC package, we did describe those elements of the package that we used 
for the Laddie appliance. We hope this overview of infrared communications 
and this example application of the LIRC software package will be a useful 
starting point if you decide to use infrared remote control for your own 
appliance.
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