
7
CReATING A HANGMAN GAMe

In this chapter we’ll build a Hangman game! We’ll
learn how to use dialogs to make the game interactive
and take input from someone playing the game.

Hangman is a word-guessing game. One player
picks a secret word, and the other player tries to
guess it.

JavaScript for Kids
©2015, Nick Morgan

106 Chapter 7

For example, if the word were TEACHER, the first player
would write:

_ _ _ _ _ _ _

The guessing player tries to guess the letters in the word.
Each time they guess a letter correctly, the first player fills in the
blanks for each occurrence of that letter. For example, if the guess-
ing player guessed the letter E, the first player would fill in the Es
in the word TEACHER like so:

_ E _ _ _ E _

When the guessing player guesses a letter that isn’t in the
word, they lose a point and the first player draws part of a stick-
man for each wrong guess. If the first player completes the
stickman before the guessing
player guesses the word, the
guessing player loses.

In our version of Hangman,
the JavaScript program will
choose the word and the human
player will guess letters. We
won’t be drawing the stickman,
because we haven’t yet learned
how to draw in JavaScript
(we’ll learn how to do that in
Chapter 13).

Interacting with a Player
To create this game, we have to have some way for the guessing
player (human) to enter their choices. One way is to open a pop-up
window (which JavaScript calls a prompt) that the player can
type into.

Creating a Prompt
First, let’s create a new HTML document. Using file4Save as,
save your page.html file from Chapter 5 as prompt.html. To create

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 107

a prompt, enter this code between the <script> tags of prompt.html
and refresh the browser:

var name = prompt("What's your name?");
console.log("Hello " + name);

Here we create a new variable, called name, and assign to it
the value returned from calling prompt("What's your name?"). When
prompt is called, a small window (or dialog) is opened, which should
look like Figure 7-1.

Figure 7-1: A prompt dialog

Calling prompt("What's your name?") pops up a window with
the text “What’s your name?” along with a text box for input.
At the bottom of the dialog are two buttons, Cancel and OK. In
Chrome, the dialog has the heading JavaScript, to inform you
that JavaScript opened the prompt.

When you enter text in the box and click OK, that text
becomes the value that is returned by prompt. For example, if I
were to enter my name into the text box and click OK, JavaScript
would print this in the console:

Hello Nick

Because I entered Nick in the text box and clicked OK, the
string "Nick" is saved in the variable name and console.log prints
"Hello " + "Nick", which gives us "Hello Nick".

NoTe The second time you open any kind of dialog in Chrome, it adds an
extra line to the dialog with a checkbox saying, “Prevent this page
from creating additional dialogs.” This is Chrome’s way of protect-
ing users from web pages with lots of annoying pop-ups. Just leave
the box unchecked for the exercises in this chapter.

JavaScript for Kids
©2015, Nick Morgan

108 Chapter 7

What Happens If You Click Cancel?
If you click the Cancel button, prompt returns the value null.
In Chapter 2, we learned that you can use null to indicate
when something is intentionally empty.

Click Cancel at the dialog, and you should see this:

Hello null

Here, null is printed as a string by console.log. Normally,
null isn’t a string, but since only strings can be printed
to the console and you told JavaScript to print "Hello " +
null, JavaScript turns the value null into the string "null"
so it can be printed. When JavaScript converts a value into
another type, it’s called coercion.

Coercion is an example of JavaScript trying to be clever.
There isn’t any way to combine a string and null using the
+ operator, so JavaScript does its best with the situation. In
this case, it knows it needs two strings. The string version
of null is "null", which is why you see the string "Hello null"
printed.

using confirm to Ask a
Yes or No Question
The confirm function is a way to take user
input without a text box by asking for a
yes or no (Boolean) answer. For example,
here we use confirm to ask the user if they
like cats (see Figure 7-2). If so, the vari-
able likesCats is set to true, and we respond
with “You’re a cool cat!” If they don’t like
cats, likesCats is set to false, so we respond
with “Yeah, that’s fine. You’re still cool!”

var likesCats = confirm("Do you like cats?");
if (likesCats) {
 console.log("You're a cool cat!");
} else {
 console.log("Yeah, that's fine. You're still cool!");
}

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 109

Figure 7-2: A confirm dialog

The answer to the confirm prompt is returned as a Boolean
value. If the user clicks OK in the confirm dialog shown in
Figure 7-2, true is returned. If they click Cancel, false is
returned.

using Alerts to Give a Player
Information
If you want to just give the player some information, you can
use an alert dialog to display a message with an OK button. For
example, if you think that JavaScript is awesome, you might use
this alert function:

alert("JavaScript is awesome!");

Figure 7-3 shows what this simple alert dialog would look like.

Figure 7-3: An alert dialog

Alert dialogs just display a message and wait until the user
clicks OK.

Why use alert Instead of console.log?
Why use an alert dialog in a game instead of using console.log?
First, because if all you want to do is tell the player something,
using alert means the player doesn’t have to interrupt game play
to open the console to see a status message. Second, calling alert
(as well as prompt and confirm) pauses the JavaScript interpreter

JavaScript for Kids
©2015, Nick Morgan

110 Chapter 7

until the user clicks OK (or Cancel,
in the case of prompt and confirm).
That means the player has time to
read the alert. On the other hand,
when you use console.log, the text
is displayed immediately and the
interpreter moves on to the next
line in your program.

Designing Your Game
Before we start writing the
Hangman game, let’s think about
its structure. There are a few
things we need our program to do:

1. Pick a random word.

2. Take the player’s guess.

3. Quit the game if the player wants to.

4. Check that the player’s guess is a valid letter.

5. Keep track of letters the player has guessed.

6. Show the player their progress.

7. Finish when the player has guessed the word.

Apart from the first and last tasks (picking a word for the
player to guess and finishing the game), these steps all need to
happen multiple times, and we don’t know how many times (it
depends on how well the player guesses). When you need to do the
same thing multiple times, you know you’ll need a loop.

But this simple list of tasks doesn’t really give us any idea of
what needs to happen when. To get a better idea of the structure
of the code, we can use pseudocode.

using Pseudocode to Design the Game
Pseudocode is a handy tool that programmers often use to design
programs. It means “fake code,” and it’s a way of describing how a
program will work that looks like a cross between written English
and code. Pseudocode has loops and conditionals, but other than

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 111

that, everything is just plain English. Let’s look at a pseudocode
version of our game to get an idea:

Pick a random word

While the word has not been guessed {
 Show the player their current progress
 Get a guess from the player

 If the player wants to quit the game {
 Quit the game
 }
 Else If the guess is not a single letter {
 Tell the player to pick a single letter
 }
 Else {
 If the guess is in the word {
 Update the player's progress with the guess
 }
 }
}

Congratulate the player on guessing the word

As you can see, none of this is real code, and no computer could
understand it. But it gives us an idea of how our program will be
structured, before we get to actually writing the code and having
to deal with the messy details, like how we’re going to pick a ran-
dom word.

Tracking the State of the Word
In the previous pseudocode, one of the first lines says, “Show
the player their current progress.” For the Hangman game, this
means filling in the letters that the player has guessed correctly
and showing which letters in the secret word are still blank. How
are we going to do this? We can actually keep track of the player’s
progress in a similar way to how traditional Hangman works:
by keeping a collection of blank spaces and filling them in as the
player guesses correct letters.

In our game, we’ll do this using an array of blanks for each
letter in the word. We’ll call this the answer array, and we’ll fill it
with the player’s correct guesses as they’re made. We’ll represent
each blank with the string "_".

JavaScript for Kids
©2015, Nick Morgan

112 Chapter 7

The answer array will start out as a group of these empty
entries equal in number to the letters in the secret word. For
example, if the secret word is fish, the array would look like this:

["_", "_", "_", "_"]

If the player correctly guessed the letter i, we’d change the sec-
ond blank to an i:

["_", "i", "_", "_"]

Once the player guesses all the correct letters, the completed
array would look like this:

["f", "i", "s", "h"]

We’ll also use a variable to keep track of the number of
remaining letters the player has to guess. For every occurrence
of a correctly guessed letter, this variable will decrease by 1.
Once it hits 0, we know the player has won.

Designing the Game loop
The main game takes place inside a while loop (in our pseudo-
code, this loop begins with the line “While the word has not been
guessed”). In this loop we display the current state of the word
being guessed (beginning with all blanks); ask the player for a
guess (and make sure it’s a valid, single-letter guess); and update
the answer array with the chosen letter, if that letter appears
in the word.

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 113

Almost all computer games are built around a loop of some
kind, often with the same basic structure as the loop in our
Hangman game. A game loop generally does the following:

1. Takes input from the player

2. Updates the game state

3. Displays the current state of the game to the player

Even games that are constantly changing follow this
same kind of loop—they just do it really fast. In the case of our
Hangman game, the program takes a guess from the player,
updates the answer array if the guess is correct, and displays
the new state of the answer array.

Once the player guesses all letters in the word, we show the
completed word and a congratulatory message telling them that
they won.

Coding the Game
Now that we know the general structure of our game, we can start
to go over how the code will look. The following sections will walk
you through all the code in the game. After that, you’ll see the whole
game code in one listing so you can type it up and play it yourself.

Choosing a Random Word
The first thing we have to do is to choose a random word. Here’s
how that will look:

u var words = [
 "javascript",
 "monkey",
 "amazing",
 "pancake"
];

v var word = words[Math.floor(Math.random() * words.length)];

We begin our game at u by creating an array of words
(javascript, monkey, amazing, and pancake) to be used as the
source of our secret word, and we save the array in the words
variable. The words should be all lowercase. At v we use
Math.random and Math.floor to pick a random word from the array,
as we did with the random insult generator in Chapter 3.

JavaScript for Kids
©2015, Nick Morgan

114 Chapter 7

Creating the Answer Array
Next we create an empty array called answerArray and fill it with
underscores (_) to match the number of letters in the word.

var answerArray = [];
u for (var i = 0; i < word.length; i++) {

 answerArray[i] = "_";
}

var remainingLetters = word.length;

The for loop at u creates a looping variable i that starts at 0
and goes up to (but does not include) word.length. Each time around
the loop, we add a new element to answerArray, at answerArray[i].
When the loop finishes, answerArray will be the same length as word.
For example, if word is "monkey" (which has six letters), answerArray
will be ["_", "_", "_", "_", "_", "_"] (six underscores).

Finally, we create the variable remainingLetters and set it to
the length of the secret word. We’ll use this variable to keep track
of how many letters are left to be guessed. Every time the player
guesses a correct letter, this value will be decremented (reduced)
by 1 for each instance of that letter in the word.

Coding the Game loop
The skeleton of the game loop looks like this:

while (remainingLetters > 0) {
 // Game code goes here
 // Show the player their progress
 // Take input from the player
 // Update answerArray and remainingLetters for every correct guess
}

We use a while loop, which
will keep looping as long as
remainingLetters > 0 remains true.
The body of the loop will have
to update remainingLetters for every
correct guess the player makes. Once
the player has guessed all the letters,
remainingLetters will be 0 and the loop
will end.

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 115

The following sections explain the code that will make up the
body of the game loop.

Showing the Player’s Progress
The first thing we need to do inside the game loop is to show the
player their current progress:

alert(answerArray.join(" "));

We do that by joining the elements of answerArray into a string,
using the space character as the separator, and then using alert
to show that string to the player. For example, let’s say the word
is monkey and the player has guessed m, o, and e so far. The
answer array would look like this ["m", "o", "_", "_", "e", "_"],
and answerArray.join(" ") would be "m o _ _ e _". The alert dialog
would then look like Figure 7-4.

Figure 7-4: Showing the player’s progress
using alert

Handling the Player’s Input
Now we have to get a guess from the player and ensure that it’s a
single character.

u var guess = prompt("Guess a letter, or click Cancel to stop playing.");
v if (guess === null) {

 break;
w } else if (guess.length !== 1) {

 alert("Please enter a single letter.");
} else {

x // Update the game state with the guess
}

At u, prompt takes a guess from the player and saves it to the
variable guess. One of four things will happen at this point.

JavaScript for Kids
©2015, Nick Morgan

116 Chapter 7

First, if the player clicks the Cancel button, then guess will be
null. We check for this condition at v with if (guess === null). If
this condition is true, we use break to exit the loop.

NoTe You can use the break keyword in any loop to immediately stop loop-
ing, no matter where the program is in the loop or whether the while
condition is currently true.

The second and third possibilities are that the player enters
either nothing or too many letters. If they enter nothing but click
OK, guess will be the empty string "". In this case, guess.length
will be 0. If they enter anything more than one letter, guess.length
will be greater than 1.

At w, we use else if (guess.length !== 1) to check for these
conditions, ensuring that guess is exactly one letter. If it’s not,
we display an alert saying, “Please enter a single letter.”

The fourth possibility is that the player enters a valid guess of
one letter. Then we have to update the game state with their guess
using the else statement at x, which we’ll do in the next section.

updating the Game State
Once the player has entered a valid guess, we must update the
game’s answerArray according to the guess. To do that, we add the
following code to the else statement:

u for (var j = 0; j < word.length; j++) {
v if (word[j] === guess) {

 answerArray[j] = guess;
w remainingLetters--;

 }
}

At u, we create a for loop with a new looping variable called j,
which runs from 0 up to word.length. (We’re using j as the variable
in this loop because we already used i in the previous for loop.) We
use this loop to step through each letter of word. For example, let’s
say word is pancake. The first time around this loop, when j is 0,
word[j] will be "p". The next time, word[j] will be "a", then "n", "c",
"a", "k", and finally "e".

At v, we use if (word[j] === guess) to check whether the cur-
rent letter we’re looking at matches the player’s guess. If it does,
we use answerArray[j] = guess to update the answer array with

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 117

the current guess. For each letter in the word that matches guess,
we update the answer array at the corresponding point. This
works because the looping variable j can be used as an index for
answerArray just as it can be used as an index for word, as you can
see in Figure 7-5.

["_", "_", "_", "_", "_", "_", "_"]

Index (j)

word

answerArray

 0 1 2 3 4 5 6

" p a n c a k e "

Figure 7-5: The same index can be used for both word
and answerArray.

For example, imagine we’ve just started playing the game and
we reach the for loop at u. Let’s say word is "pancake", guess is "a",
and answerArray currently looks like this:

["_", "_", "_", "_", "_", "_", "_"]

The first time around the for loop at u, j is 0, so word[j]
is "p". Our guess is "a", so we skip the if statement at v (because
"p" === "a" is false). The second time around, j is 1, so word[j]
is "a". This is equal to guess, so we enter the if part of the state-
ment. The line answerArray[j] = guess; sets the element at index
1 (the second element) of answerArray to guess, so answerArray now
looks like this:

["_", "a", "_", "_", "_", "_", "_"]

The next two times around the loop, word[j] is "n" and then
"c", which don’t match guess. However, when j reaches 4, word[j]
is "a" again. We update answerArray again, this time setting the
element at index 4 (the fifth element) to guess. Now answerArray
looks like this:

["_", "a", "_", "_", "a", "_", "_"]

The remaining letters don’t match "a", so nothing happens the
last two times around the loop. At the end of this loop, answerArray
will be updated with all the occurrences of guess in word.

JavaScript for Kids
©2015, Nick Morgan

118 Chapter 7

For every correct guess, in addition to updating answerArray,
we also need to decrement remainingLetters by 1. We do this at w
using remainingLetters--;. Every time guess matches a letter in word,
remainingLetters decreases by 1. Once the player has guessed all the
letters correctly, remainingLetters will be 0.

ending the Game
As we’ve already seen, the main game loop condition is
remainingLetters > 0, so as long as there are still letters to
guess, the loop will keep looping. Once remainingLetters
reaches 0, we leave the loop. We end with the following code:

alert(answerArray.join(" "));
alert("Good job! The answer was " + word);

The first line uses alert to show the
answer array one last time. The second
line uses alert again to congratulate the
winning player.

The Game Code
Now we’ve seen all the code for the game,
and we just need to put it together. What
follows is the full listing for our Hangman
game. I’ve added comments throughout to
make it easier for you to see what’s happen-
ing at each point. It’s quite a bit longer than
any of the code we’ve written so far, but
typing it out will help you to become more
familiar with writing JavaScript. Create a
new HTML file called hangman.html and
type the following into it:

<!DOCTYPE html>
<html>
<head>
 <title>Hangman!</title>
</head>

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 119

<body>
 <h1>Hangman!</h1>

 <script>
 // Create an array of words
 var words = [
 "javascript",
 "monkey",
 "amazing",
 "pancake"
];

 // Pick a random word
 var word = words[Math.floor(Math.random() * words.length)];

 // Set up the answer array
 var answerArray = [];
 for (var i = 0; i < word.length; i++) {
 answerArray[i] = "_";
 }

 var remainingLetters = word.length;

 // The game loop
 while (remainingLetters > 0) {
 // Show the player their progress
 alert(answerArray.join(" "));

 // Get a guess from the player
 var guess = prompt("Guess a letter, or click Cancel to stop 
playing.");
 if (guess === null) {
 // Exit the game loop
 break;
 } else if (guess.length !== 1) {
 alert("Please enter a single letter.");
 } else {
 // Update the game state with the guess
 for (var j = 0; j < word.length; j++) {
 if (word[j] === guess) {
 answerArray[j] = guess;
 remainingLetters--;
 }
 }
 }

JavaScript for Kids
©2015, Nick Morgan

120 Chapter 7

 // The end of the game loop
 }

 // Show the answer and congratulate the player
 alert(answerArray.join(" "));
 alert("Good job! The answer was " + word);
 </script>
</body>
</html>

If the game doesn’t run, make sure that you typed in every-
thing correctly. If you make a mistake, the JavaScript console
can help you find it. For example, if you misspell a variable name,
you’ll see something like Figure 7-6 with a pointer to where you
made your mistake.

Figure 7-6: A JavaScript error in the Chrome console

If you click hangman.html:30,
you’ll see the exact line where
the error is. In this case, it’s
showing us that we misspelled
remainingLetters as remainingLetter
at the start of the while loop.

Try playing the game a few
times. Does it work the way you
expected it to work? Can you
imagine the code you wrote run-
ning in the background as you
play it?

What You learned
In just a few pages, you’ve created your first JavaScript game!
As you can see, loops and conditionals are essential for creating
games or any other interactive computer program. Without these
control structures, a program just begins and ends.

In Chapter 8, we’ll use functions to package up code so you can
run it from different parts of your programs.

JavaScript for Kids
©2015, Nick Morgan

Creating a Hangman Game 121

Programming Challenges
Here are some challenges to build on and improve the
Hangman game you created in this chapter.

#1: More Words
Add your own words to the words array. Remember to enter
words in all lowercase.

#2: Capital letters
If a player guesses a capital letter, it won’t match a lowercase
letter in the secret word. To address this potential problem,
convert the player’s guess to lowercase. (Hint: You can use
the toLowerCase method to convert a string to lowercase.)

#3: limiting Guesses
Our Hangman game gives a player unlimited guesses. Add
a variable to track the number of guesses and end the game
if the player runs out of guesses. (Hint: Check this variable in
the same while loop that checks whether remainingLetters > 0.
As we did in Chapter 2, you can use && to check whether two
Boolean conditions are true.)

#4: fixing a Bug
There’s a bug in the game: if you keep guessing the same
correct letter, remainingLetters will keep decrementing. Can
you fix it? (Hint: You could add another condition to check
whether a value in answerArray is still an underscore. If it’s
not an underscore, then that letter must have been guessed
already.)

JavaScript for Kids
©2015, Nick Morgan

	9781593274085 132
	9781593274085 133
	9781593274085 134
	9781593274085 135
	9781593274085 136
	9781593274085 137
	9781593274085 138
	9781593274085 139
	9781593274085 140
	9781593274085 141
	9781593274085 142
	9781593274085 143
	9781593274085 144
	9781593274085 145
	9781593274085 146
	9781593274085 147
	9781593274085 148

