
B o n u s A p p l i c a t i o n s

In this document you’ll find bonus applications to go
along with Chapters 2, 6, 7, and 9. We walk through
detailed explanations of each application, and you
can find the scripts for these applications in the
.zip file you downloaded from http://nostarch.com/
learnscratch/.

Chapter 2
In this section, you’ll create a game called Survival Jump, which highlights
different ways to make sprites move. In this game, players have to use the
arrow keys to make a sprite jump over various objects coming from the right
side of the Stage. See Figure 1 for an overview of the sprites involved. To
keep the game simple, we won’t penalize players for touching the object.
Instead, we’ll just play a sound each time we have a collision.

Jump_NoCode
.sb2

2 Bonus Applications

Use the arrow keys to
make the Player sprite
jump over the moving
object.

The Object sprite moves
from right to left. When it
reaches the left edge, it
it starts again using a
different shape.

Costumes of the Object sprite

Costumes of the Player sprite

Figure 1: Leap over the moving objects to survive.

Open up Jump_NoCode.sb2, which contains all the sprites and the
sounds needed for the game. The following discussion will walk you
through creating the game, starting with the Player sprite scripts in
Figure 2.

The Player sprite

has three costumes.
Switching between
these costumes gives
the sprite a pleasing
animation effect.

Move up
200 steps.

Then move
down slowly.










Figure 2: The scripts for the Player sprite

When the green flag is clicked, we first move the Player sprite to an appro-
priate location at the bottom-left part of the Stage u. We then start a forever
loop v to change the Player sprite’s costume so the character looks like it’s
moving. You can find the next costume block in the Looks palette.

The other three scripts shown in Figure 2 respond to the arrow keys.
When the right arrow is pressed, we move the sprite 100 steps to the right by
changing its x-position w. To slow down the motion and make it feel more
realistic, we break the motion into 10 hops of 10 steps each. The left arrow
key does the same thing but in the opposite direction x.

The up arrow y also moves the sprite, but now we want the sprite to
jump up quickly and then drop at a slower rate. The total steps in the up
and down directions are equal, at 200 steps.

Bonus Applications 3

Test what you’ve written so far by clicking the green flag. You should see
the animation of the Player sprite, and you should be able to move the sprite
around with the arrow keys. When you’re done, press the stop icon and then
add the script in Figure 3 to the Object sprite.

Start from lower-right corner of the Stage.-

Move to the left in steps of 10. After
each step, check for collision; if you are
touching the Player sprite, play a sound.
When you reach the left side of the Stage
(x-position becomes less than –230), exit
the repeat until loop.

Change the costume (to show a different
shape) and start another round.

Note: The costume center (for all
costumes of this sprite) was set at the
lower-left corner.







Figure 3: The script for the Object sprite

First, we move the Object sprite to the lower-right corner of the Stage u
and start moving it to the left v. After each move, we play a sound if the
object hits the player. The object moves left until it reaches the edge of the
Stage. Then, the script changes the object’s costume w and moves back to
the start of the forever loop to repeat the whole sequence.

That was the last script, so click the green flag icon to test the game
and start dodging objects. When you learn about variables and decision
making in later chapters, you’ll be able to make this game more complex.
You could, for example, keep score, have the player lose energy with each
collision, change the graphics effects of the moving object, clone the mov-
ing object—and more. Let your imagination have fun!

Chapter 6
This section explores two more games: a Guess My Number program and a
Scratch version of Rock, Paper, Scissors.

Guess My Number
The number-guessing game selects a random integer between 1 and 100
and prompts the player to guess that number. The application then tells the
player if the guess was higher or lower than the secret number by displaying
“too high” or “too low,” respectively. The player has six chances to guess the
secret number. If the guess is correct, the player wins the game; otherwise,
the player loses. The interface for this application is shown in Figure 4.

GuessMy
Number.sb2

4 Bonus Applications

Arrow sprite

Text sprite

Driver sprite

Figure 4: The user interface for the Guess My Number game

The application contains three sprites. The Driver sprite controls the
flow of the application. The Arrow sprite provides animated feedback about
how to adjust the next guess. The Text sprite shows the status of the game
after each guess.

The game starts when the green flag is clicked. In response, the Driver
sprite executes the script shown in Figure 5.












Figure 5: Script for the Driver sprite

The script starts by setting targetNum to a random integer between 1 and
100 u. It then starts a loop for getting and checking the player’s guesses v.
The loop repeats for (at most) six times. During each iteration of the loop,
the player is prompted to enter a guess w. The value entered is saved in the
built-in variable answer. The script then compares the player’s guess with the
target number. If the player guessed correctly x, the script broadcasts the
Won message, which will be acted upon by the other two sprites as you’ll see

Bonus Applications 5

below, and executes the stop block to end the script. If the guess was incor-
rect, the script checks whether the guess was higher than the target y. If
yes, it broadcasts the High message to the other two sprites. Otherwise z, the
player’s guess is lower than the target number, and the script broadcasts the
Low message. If the player fails to guess the number after six trials, the loop
ends, and the script broadcasts the Lost message {.

The scripts for the Text sprite are shown in Figure 6, which also shows
the five costumes used by this sprite. This sprite switches its costume in
response to the different broadcast messages.

?

Too High Too Low

You Won You Lost

Figure 6: Scripts for the Text sprite

The scripts for the Arrow sprite are shown in Figure 7. This sprite has
10 costumes (also shown in the figure), which provide a simple animation
effect. The scripts switch between these costumes to provide the desired
animation.

costumes 1 to 5 costumes 6 to 10

Figure 7: Scripts for the Arrow sprite

When the sprite switches between costumes 1 through 5 in fast succes-
sion, the arrow appears to move to the right, telling the user to increase the
guess. Similarly, when the sprite switches between costumes 6 through 10,
the arrow moves to the left, telling the user to lower the guess.

6 Bonus Applications

t ry i t ou t 1

Load GuessMyNumber.sb2 and play it to see how it works. Why do you think the
program limits the number of guesses to six? Is it possible to guess the target number
in six or fewer tries? What is the best strategy? (Hint: If your first guess is 50, then
feedback such as “too low” will allow you to eliminate half of the possible numbers.)
Modify the program to keep track of the player’s number of guesses. Then have the
Driver sprite display a message that uses this number at the end of the game.

GuessMy
Number.sb2

Rock, Paper, Scissors
In this section, we’ll create a Rock, Paper, Scissors game that lets you play
against the computer. The interface for this game is shown in Figure 8.
The hand symbols on the three buttons represent (from left to right) rock,
paper, and scissors. The player selects an action by clicking on the cor-
responding button. The computer, on the other hand, selects an action
randomly. The following rules determine the winner: paper beats (wraps)
rock, rock beats (breaks) scissors, and scissors beat (cut) paper.

Scissors sprite

Paper sprite

Rock sprite

Computer sprite

Player sprite

Result sprite (invisible)

Figure 8: The user interface for the Rock, Paper, Scissors game

The application contains six sprites as shown in Figure 8. The Player
sprite is responsible for showing the player’s selection, whereas the
Computer sprite is responsible for showing the computer’s choice. The
Rock, Paper, and Scissors sprites represent the three buttons, and the
Result sprite (not shown in the figure) shows the result of the game.

The game starts when the player clicks on one of the three buttons to
choose an action. The scripts associated with the possible actions are shown
in Figure 9. Each button sets the choice1 variable to a value that identifies
the player’s choice and then broadcasts the Start message to tell the other
sprites that the player has made a selection.

The Start message is handled by the Stage, which executes the script in
Figure 10.

RockPaper.sb2

Bonus Applications 7

Script for the Rock sprite Script for the Paper sprite Script for the Scissors sprite

Figure 9: The event handlers for the three action buttons






Figure 10: Script for the Stage to respond
to the player’s choice of action

The script starts by broadcasting the NewGame message to tell the
Player and the Computer sprites to display their choice u. It then calls its
CheckResult procedure to find out who won this round of the game v.
After that, it broadcasts ShowResult to tell the Result sprite to show the
result w, followed by GameOver x to let the other sprites prepare for
another round. Let’s examine these scripts one at a time.

The NewGame message is handled by all six sprites. The Rock, Paper,
Scissors, and Result sprites simply hide themselves when they receive this
message. The Player and the Computer sprites, on the other hand, execute
the scripts shown in Figure 11.

Script for the
Player sprite

Script for the
Computer sprite

Figure 11: The scripts prompted by the NewGame message for the Player (left)
and the Computer (right) sprites

8 Bonus Applications

Both sprites switch their costumes five times in a row very quickly (for
a fun visual effect), and then they show their selected costume. While the
costume of the Player sprite is decided by the user via the choice1 variable
(which is set when the user clicks one of the three buttons), the Computer
sprite sets the value of the choice2 variable to a random number between
1 and 3 and sets its costume accordingly. Both the Player and the Computer
sprites have three costumes each that represent rock, paper, and scissors.

Once the Player and the Computer sprites have shown their selection, the
Stage calls its CheckResult procedure, shown in Figure 12. Note that the
nested if/else blocks have been separated to make the code easier to under-
stand. The procedure compares the values of choice1 and choice2 and sets
the value of the winner variable accordingly. Remember that a 1 corresponds
to rock, a 2 corresponds to paper, and a 3 corresponds to scissors.

This if/else block
executes when the
player selects rock

(choice1 = 1).

This if/else block
executes when the
player selects paper

(choice1 = 2).

This if/else block

executes when the
player selects scissors

(choice1 = 3).

Figure 12: The CheckResult procedure of the Stage

After checking the result and setting the value of the winner variable,
the Stage broadcasts the ShowResult message. The message is handled
by the Result sprite, which executes the script shown in Figure 13. After
checking the value of the winner variable, this code shows one of its three
costumes accordingly. The repeat block just adds a visual effect to make
the result display more clearly.

Finally, when the ShowResult script ends, the Stage sprite broadcasts
GameOver to indicate the end of this round. In response to this message,
the three button sprites show themselves, and the Result sprite hides itself.
The game is ready for the next round.

Bonus Applications 9

Create
blinking
effect

Costumes of the Result sprite

Player Wins

Computer Wins

Tie

Figure 13: The script prompted by the ShowResult message for the
Result sprite

t ry i t ou t 2

Load RockPaper.sb2 and play it several times to see how it works. Make the game
keep track of how many times the player has won, lost, and tied. Also, display the
score information at the end of each round.

RockPaper.sb2

Chapter 7
The first bonus script for Chapter 7 is a game that you can use to test your
counting skills. You’ll also build two science simulations in this section: one
for planetary motion and another to demonstrate the motion of a single gas
molecule inside a container.

Match That Amount
The game shows an amount of money in pennies, and it asks the user to
find the least number of coins needed to give an equivalent amount of
money. The interface for the game is illustrated in Figure 14.

MatchThat
Amount.sb2

10 Bonus Applications

Eight sprites: 1Down, 1Up, 5Down,
5Up, 10Down, 10Up, 25down, and 25Up

Four variables named: n1, n5,
n10, and n25

The target variable

The New sprite

The Check sprite

The Result
sprite

Figure 14: The user interface for the Match That Amount application

The game contains 11 sprites: eight arrow buttons for setting the answer,
a New button for starting a new problem, a Check button for checking the
answer, and a Result sprite for giving feedback to the user.

The game starts when the user clicks the New button to display a new
problem. In response, the New sprite runs the script shown in Figure 15 (left).
The script sets the target variable to a random number between 1 and 250
and then broadcasts NewProblem. The only sprite that traps this message is
the Result sprite, which simply clears its current message (if any) by executing
a think command with a blank string, as shown in Figure 15 (right).

This script runs when
the New button is

This script belongs to the
Result sprite.

clicked.

Figure 15: Scripts for the New sprite (left) and the Result sprite (right)

The script expects the user to pick an answer by clicking the left and
right arrow buttons below the different coins. The buttons have nearly iden-
tical scripts; the only difference is which variable they control. The scripts
associated with the 1Up and the 1Down sprites are shown in Figure 16. The
scripts for the other buttons work in a similar manner: The 5Up and 5Down
sprites update the variable n5, the 10Up and 10Down sprites update the vari-
able n10, and the 25Up and 25Down sprites update the variable n25.

This script belongs to
the 1Up sprite.

This script belongs to
the 1Down sprite.

Figure 16: Scripts for the 1Up and 1Down sprites

Bonus Applications 11

After setting an answer, the user clicks the Check button to see whether
that answer is correct. In response, the Check sprite broadcasts CheckAnswer,
which is received and processed by the Result sprite via the script shown in
Figure 17.

Figure 17: The script prompted by the CheckAnswer message for the Result sprite

The script first calls Calculate to compute the least number of coins
needed to match the target amount. The computed values are saved in four
variables named c1, c5, c10, and c25, which indicate the correct number of
1¢, 5¢, 10¢, and 25¢ coins, respectively. The script then compares the values
specified by the user (saved in n1, n5, n10, and n25) with the correct values.
If the values match, then the user’s answer is correct. If there is a mismatch
but the answers add up to the target amount, then the script tells the user
that fewer coins could have been used. Otherwise, the answer is incorrect,
and the user is asked to try again. Let’s now examine the Calculate proce-
dure, shown in Figure 18.

The variables c1, c5, c10, and c25 indicate the correct number of pen-
nies, nickels, dimes, and quarters, respectively. The rem variable is used to
keep track of the remaining number of pennies after the value of the other
selected coins is subtracted. The procedure starts by initializing the four
variables to 0 and setting rem equal to the target amount. The first loop
finds the optimal number of quarters by repeatedly subtracting 25 from
the target value until there are fewer than 25 pennies. The second loop
finds the optimal number of dimes by repeatedly subtracting 10 from the
remainder, and the third loop uses the same technique to find the optimal
number of nickels.

12 Bonus Applications

Find the number of quarters by
repeatedly subtracting 25 from the
target value until the remaining
number of pennies is less than 25.

Find the number of dimes by
repeatedly subtracting 10 until the
remaining number of pennies is
less than 10.

Find the number of nickels by
repeatedly subtracting 5 until the
remaining number of pennies is
less than 5.

Figure 18: The Calculate procedure

t ry i t ou t 3

Load MatchThatAmount.sb2 and play it several times to understand how it works.
Modify the Calculate procedure to use the mod operator (from the Operators
palette) instead of the repeat until blocks.

MatchThat
Amount.sb2

Planetary Motion
In this section, we’ll explore planetary
motion for a simple solar system that
contains the Sun and a single planet,
which we’ll call Earth, as shown in
Figure 19.

According to Newton’s law of grav-
ity, the gravitational force, F, between
the Sun and Earth is given by

F G
Mm

r
= 2

Orbit.sb2

Figure 19: The orbit of Earth around
the Sun

a

ax

ay

Sun

Earth

x

y

r

(x,y)
θ

(0,0)

Bonus Applications 13

where M and m are the masses of the Sun and Earth, r is the distance between
them, and G is the universal gravitational constant. Using Newton’s second
law, the acceleration, a, of Earth toward the Sun is calculated as follows:

a
F
m

G
M

r
= = 2

If the Sun is located at (0,0) and Earth’s current position is (x,y), the x -
and y -components of the acceleration are

a a G
M x

r
x = =−cos

3
q

and

a a s G
M y

r
y ,= =−in

3
q

where the negative sign indicates that the acceleration is directed toward
the Sun.

Since acceleration is change in velocity per unit of time, during each
time interval, Earth’s horizontal velocity vx changes by ax, and Earth’s verti-
cal velocity vy changes by ay. In addition, since velocity is change in position
per unit of time, Earth’s horizontal position changes by vx and its vertical
position changes by vy for each time interval. That means for each time
interval in our simulation, we need to calculate Earth’s distance to the Sun,
change vx (by –ax) and vy (by –ay) and change Earth’s x-position (by vx) and
y-position (by vy).

The last thing we need to consider is which units correspond to the
scale of the problem. Measuring distance in astronomical units (where
1 AU ≈ 1.5 × 1011 meters) and time in years (with 1 year ≈ 3.156 × 107 sec-
onds), we have

M G× ≈ () × () ≈−1 99 10 6 673 10 39 230 11
3

2
3 2. . . /kg

m

kg sec
AU year

The user interface for our simulation is shown in Figure 20. The appli-
cation contains three sprites named Sun, Earth, and Show.

The Show sprite has two costumes that show a checkbox in its checked
and unchecked states. Clicking this button causes the sprite to switch
between these two costumes and broadcast either the ShowOrbit or HideOrbit
message. When the Earth sprite receives the ShowOrbit message, it puts its
pen down to draw the orbit on the Stage, and when it receives HideOrbit, it
puts its pen up and clears the Stage. You’ll find the corresponding scripts
in Orbit.sb2.

14 Bonus Applications

Show sprite

Earth sprite

Sun sprite

Figure 20: The user interface for the planetary motion simulation

The script for the Earth sprite, which drives the simulation, is shown in
Figure 21.

Figure 21: Script for the Earth sprite

The Earth is first moved to point (150,0) on the Stage and is given a
small initial velocity in the positive y -direction. The infinite loop then per-
forms the following steps repeatedly:

1.	 Compute the current distance (R) to the Sun and find the cube of this
distance (saved in the variable R3).

2.	 Update the horizontal and vertical components of the velocity, as
described above.

3.	 Update the x - and y -coordinates of the Earth and move it to its new
position.

Bonus Applications 15

t ry i t ou t 4

Load Orbit.sb2 and run it to understand how it works. Although the orbit in
Figure 20 looks circular, it actually isn’t. Check the monitor for the R variable to
see how Earth’s distance from the Sun changes during the simulation.

Orbit.sb2

Molecules in Motion
According to the kinetic theory of gases, the molecules of any gas are in
constant and random motion. If a gas is trapped in a container, its particles
constantly collide with each other and with the walls of the container. The
speed of motion is directly proportional to the temperature of the gas.
The simple simulation presented here focuses on how a single molecule’s
motion changes when it collides with the walls of its container. The user
interface for the application is shown in Figure 22.

Atom sprite

Burner sprite

Temperature control

Coordinates:
(–150,100)

Coordinates:
(150,–100)

Figure 22: The user interface for the Molecules in Motion simulation

When the sprite collides with a wall of the container, it should bounce
off that wall at an angle that is equal to the angle of incidence (the angle at
which the sprite hit the wall), as demonstrated in Figure 23.

0
x x

x
0

x
yy

Pointing in
direction x

Pointing in
direction 180 − x

90 + y

Pointing in
direction x

Pointing in
direction −x

90 + (90 − x)
180 − x

Figure 23: Direction after colliding with the right wall (left) and the
top wall (right)

MoleculesIn
Motion.sb2

16 Bonus Applications

Figure 23 (left) shows that if a sprite pointing in some direction (x)
hits the right (or left) wall, it will bounce off the wall in the direction –x.
Similarly, Figure 23 (right) shows that if a sprite pointing in some direction
(x) hits the top (or bottom) wall, it will bounce off in the direction 180 – x.

The application contains two sprites: the Atom sprite and the Burner
sprite. The Burner sprite has four costumes that show flames of different
sizes, and its script switches between the costumes to animate the flame.
You’ll find the burner’s scripts in MoleculesInMotion.sb2 ; the script for the
Atom sprite is shown in Figure 24.

Figure 24: Script for the Atom sprite

The sprite moves to the origin of the Stage, selects a random initial
direction, and enters a forever loop. During each iteration of the loop, it
sets the speed variable based on the current value of the temperature vari-
able, which the user controls via a slider. The two if blocks check the sprite’s
current x - and y -coordinates to see whether it has collided with any of the
walls of the container. In the case of a collision, the sprite sets its new head-
ing as described above. The sprite then moves some distance (specified by
the speed variable) in its new direction.

Chapter 9
Chapter 9 covered lists, and the three bonus applications for this chapter
feature them as well. The first application is a two-player game about sort-
ing fractions and decimals. The second is a program that spells whole num-
bers. The third demonstrates the sieve of Eratosthenes, an algorithm for
finding all prime numbers less than 100.

Bonus Applications 17

Sort ’Em Out
This game involves sorting fractions and decimals. The user interface for
the game is shown in Figure 25.

Each player gets 5 random cards from a deck of 31 cards, and a player
can press the deal button to receive a new card. Players can then drag a new
card over one of their original five cards to replace it, or they can drag it
over the recycle bin image to discard it. The first player to arrange cards in
ascending order wins the game.

Turn sprite

Dealer sprite

Deck sprite
(invisible)

New sprite
Result sprite

Numbers stamped
by the Deck sprite

Figure 25: The user interface for the Sort ’Em Out game

The application contains five sprites. The Dealer sprite, represented
on the interface by the deal button, manages the flow of the application.
The Deck sprite has the costumes of the 31 cards (see Figure 26). It shows
the players’ cards and contains the logic that determines whether the dealt
card was dropped over another card or onto the recycle bin. The 31 cards
are added to the costume list of this sprite in order, from smallest to largest,
where the first costume corresponds to the 0.1 card, the second costume
corresponds to the 1/9 card, and so on. The New sprite represents the New
Game button, the Turn sprite shows which player’s turn is next, and the
Result sprite shows the winner.

0.1 1
9

1
8

1
7

1
6 0.2 2

9 0.25

2
7 0.3 1

3
3
8 0.4 3

7
4
9 0.5

5
9

4
7 0.6 5

8
2
3 0.7 5

7 0.75

7
9 0.8 5

6
6
7

7
8

8
9 0.9

Figure 26: The 31 costumes of the Deck sprite

N o t e 	 This application has many scripts, but this section explains only those related to list
management. You can find the missing details in the SortEmOut.sb2 file.

SortEmOut.sb2

18 Bonus Applications

When a player clicks the New Game button, the New sprite broadcasts
the NewGame message. In response, the Dealer sprite executes the script
shown in Figure 27.

Clear the Stage, initialize the
variables, and clear the three
lists.

Put the 31 cards in the card

list, shuffle the list, and deal
each player five cards.

Let the Deck sprite show the
cards for the two players.
Select the first player and let
the Turn sprite show its
costume.









Figure 27: The script activated by the NewGame message for the Dealer sprite

This script uses the variables and lists described in Table 1 to keep
track of all the information for the players and cards in Sort ’Em Out.

Table 1: Variables and Lists for the New Game Script

Name Type Description
playerTurn variable Indicates whose turn is next. A value of 1 means player 1,

a value of 2 means player 2, and a value of 0 means the
game hasn’t started.

winner variable Indicates the winner of the game. Again, a value of 1 means
player 1, a value of 2 means player 2, and a value of 0
means not decided yet.

deal variable Indicates whether or not to deal a new card. When a player
deals a new card, this flag is set to 1 to indicate that no
more cards should be dealt until the player does something
with the dealt card.

card list Contains the available cards for dealing.
player1 list Contains the first player’s five cards.
player2 list Contains the second player’s five cards.

The script starts by clearing the Stage from the stamps of the previous
game. It then initializes the three variables (playerTurn, winner, and deal)
to 0 and clears the three lists (card, player1, and player2) in preparation for
a new game u. The script then calls FillCardList and Shuffle to put the
31 cards in the card list in random order and calls GiveCardsToPlayers
to deal each player five cards, starting from the top of the card list v.

Bonus Applications 19

(I’ll explain these procedures soon.) After that, the script broadcasts the
ShowCards message to tell the Deck sprite to show the two players’ cards on
the Stage w. The Deck sprite reads the contents of the player1 and player2
lists, and it stamps the costumes that correspond to each element at a pre-
defined location on the Stage (see SortEmOut.sb2 for the details). At last, the
script selects the first player randomly and broadcasts the ShowTurn message
to the Turn sprite x. The Turn sprite responds by displaying a costume that
reads either “Player 1” or “Player 2,” based on the current value of the
playerTurn variable.

Now, let’s explore the FillCardList and the Shuffle procedures, shown
in Figure 28.





Figure 28: FillCardList (left) and Shuffle (right) belong to the Dealer sprite.

The FillCardList procedure adds the numbers 1 through 31 to the card
list. The Shuffle procedure rearranges the elements of the card list by swap-
ping their positions randomly. It does this by selecting two random posi-
tions in the list u and swapping their contents using a temporary variable
named temp v. The count of 15 for the repeat loop is arbitrary.

The GiveCardsToPlayers procedure, which is shown in Figure 29, simu-
lates the process of dealing cards from the top of the deck to the two play-
ers in alternate turns.

Figure 29: The Dealer sprite’s GiveCardsToPlayers procedure

20 Bonus Applications

The procedure takes the top card from the deck (the first item of the
card list) and gives it to player 1. It then takes the new top card and gives
it to player 2. The process repeats until each player has five cards. At the
end of this procedure, both the player1 list and the player2 list will have five
numbers (representing five cards), and the card list will have the 21 num-
bers remaining for dealing.

Now the two players are ready to start playing. The player whose turn it
is clicks the deal button to see the card at the top of the deck. In response,
the Dealer sprite executes the script shown in Figure 30.

Figure 30: The script that runs when
the Deal button is clicked

If the game has been initialized (that is, if the playerTurn variable isn’t 0)
and the deal flag is 0 (which means that the sprite is not currently waiting
on a player’s action), the script sets the deal flag to 1 (to ignore additional
clicks of the deal button) and broadcasts the ShowNewCard message to the
Deck sprite. When the Deck sprite receives this message, it wears the cos-
tume of the card specified by the first element of the card list and makes
itself visible to allow the player to drag it over the Stage. The Deck sprite
then tracks the player’s drag-and-drop actions. Nothing happens until the
player drops the card either on top of one of the five cards or onto the
recycle bin.

The Deck sprite communicates the user’s action back to the Dealer sprite
via the variable dropTarget. If the player drops the card onto the recycle bin,
the sprite sets dropTarget to 0, hides itself, and broadcasts the GotUserChoice
message. If the player drops the card over one of the five cards, the sprite
sets dropTarget to 1, 2, 3, 4, or 5 (based on which of the five cards was cho-
sen), stamps the image of the dragged card over the selected card, and
broadcasts the GotUserChoice message. Check SortEmOut.sb2 for the details
of the drag-and-drop procedure.

When the Dealer sprite receives the GotUserChoice message, it executes
the script shown in Figure 31.

Bonus Applications 21

The player has chosen to
discard the card dealt. Put the
dealt card back at the end
of the deck and then give a
turn to the next player.

The player has chosen to
replace a card. Replace the
player’s card with the dealt
card.

If we have a winner, broadcast
ShowWinner to the Result sprite.
Otherwise, call NextPlayer
to give the next player a turn.







Figure 31: The GotUserChoice script of the Dealer sprite

If the dropTarget variable is set to 0, then the player has chosen to
discard the dealt card. In this case, the script calls RecycleCard to put
the card back at the end of the deck and then gives the next player a
turn u. Otherwise, if the player has chosen to replace a card, the script
calls SwapCards to replace the player’s card with the dealt card v. The
SwapCards procedure also checks whether the player’s latest move has
produced an ordered set of cards and sets the winner variable accordingly.
When SwapCards returns, the script checks the value of the winner vari-
able w. If winner has a nonzero value (meaning that a winner has been
detected), the script broadcasts the ShowWinner message (to the Result
sprite) to show the winner of the game and ends the game. Otherwise, it
calls NextPlayer to give the next player a turn.

Let’s now look at the three procedures called from the GotUserChoice
script, starting with the RecycleCard and the NextPlayer procedures,
shown in Figure 32.

Figure 32: The RecycleCard (left) and the NextPlayer (right) procedures
of the Dealer sprite

22 Bonus Applications

The RecycleCard procedure moves the first (top) card from the deck
to the end of the deck. The NextPlayer procedure first switches the value
of the playerTurn variable and then broadcasts the ShowTurn message to tell
the Turn sprite to show the correct image for the next player. The procedure
also resets the deal flag back to 0 to indicate that it is ready to process the
next click of the deal button. The third procedure, SwapCards, is shown in
Figure 33.

Swap the first item in the card list with the
item at position dropTarget of the list for
the current player.





Figure 33: The SwapCards procedure of the Dealer sprite

The procedure replaces the element at position dropTarget in the list
for the current player with the dealt card (which is the first element in the
card list) u, and it moves the replaced element to the end of the card list v.
The procedure then calls CheckPlayer1List (or CheckPlayer2List) to see
whether the player’s five cards are in order. The CheckPlayer1List pro-
cedure is shown in Figure 34. The CheckPlayer2List procedure is almost
identical, except for its target list (player2) and the value it assigns to the
winner variable (2).

The CheckPlayer1List procedure compares the first and second ele-
ments, the second and third, and so on u. If the second element in any
of these pairs is less than the first element, then the list is not sorted v.
Otherwise, the list is in the proper order, and the winner variable is set
accordingly w.

Bonus Applications 23







Figure 34: The CheckPlayer1List procedure of the Dealer sprite

Say That Number
This section presents an application that asks the user for a number and
says that number in words. If the user inputs 3526, for example, the pro-
gram will say “three thousand five hundred twenty six”.

As demonstrated in the example in Figure 35, the idea is to break the
number, from right to left, into groups of three digits. Each of these groups
is then spelled out individually, followed by a multiplier word (such as thou-
sand, million, and so on) if needed.

7 5 1 0 6 0 5 2 3 2 1

three hundred
twenty one

fifty twoone hundred sixseventy five

thousandmillionbilliontrillion

seventy five billion, one hundred six million, fifty two thousand, three hundred twenty one

Figure 35: Spelling out a number in words

First, we’ll need to get a number from the user. Then, our script will
need to break that number into groups of three digits and save the result-
ing groups in a list (called group), as illustrated in Figure 36. Once the dig-
its are in a list, our script can cycle through the elements in reverse order,
spell out the digits of each group, and append the appropriate multiplier
word to the group.

SayThatNumber
.sb2

24 Bonus Applications

7 5 1 0 6 0 5 2 3 2 1

Figure 36: Breaking the user’s number into three-digit groups

Our first procedure, called BreakNumber, is shown in Figure 37. It
works on the number input by the user, which is saved in the built-in vari-
able answer.













Figure 37: The BreakNumber procedure

The procedure divides the input number into groups of three digits
and saves these groups into the group list. The procedure also uses three
variables: pos is an index to the individual digits of the input number, temp
temporarily holds the three digits of each group, and count keeps track of
the number of digits added to temp.

The procedure first sets pos to index the first digit (from the right)
of answer, empties the temp string, and sets count to 0 to indicate that temp
is currently empty u. It then starts a repeat until loop to cycle through
all the digits of answer from right to left v. Note that pos is changed by

Bonus Applications 25

–1 at the end of each iteration y. Inside the loop, the procedure appends
one digit from answer to the temp string and changes count by 1 w. The
added digit is the one whose index is given by the pos variable. When count
becomes 3 x, meaning that we’ve accumulated a three-digit group, the
procedure adds the value stored in the temp variable to the list, empties the
temp string, and resets count to 0 in order to prepare for extracting the next
three digits of answer. If count is greater than 0 when the loop ends z, then
our last group has fewer than three digits, and we simply add this group to
the list.

Now we need to write a procedure that spells a three-digit number. If
the number is anything from 100 to 999, we’ll spell out the digit in the hun-
dreds place followed by the word hundred. We’ll then remove the hundreds
digit from the number so we only have to spell a two-digit number. For
example, if the input number is 321, this step produces the text “three hun-
dred” and changes the input number to 21 (that is, 321 – 300).

To spell a two-digit number, we have to consider two cases. If the num-
ber is between 11 and 19 (inclusive), we can spell the number as one word
(eleven, twelve, and so on) and be done. If the number is greater than 19
or exactly 10, we can spell the tens digit (ten, twenty, and so on) and then
remove it, leaving us with a one-digit number to spell. For the input number
21, this step produces the text “twenty” and changes the input number to 1
(that is, 21 – 20).

Spelling a one-digit number is the simplest step. If the digit is between
1 and 9 (inclusive), we’ll spell out a single word (one, two, and so on) that
corresponds to the input digit.

In addition to the group list, the application uses the four lists shown in
Figure 38 to store the substitution words needed for its spelling task. The
first three lists (digit, ten, and teen) will be consulted to extract the appro-
priate words for spelling a three-digit number, whereas the multiplier list is
used to get the appropriate multiplier for each group. Note that the first
entry of the multiplier list contains an empty string because the first three
digits (from the right) do not need a multiplier word.

Figure 38: The lists used in the Say That Number application

26 Bonus Applications

Our SpellTrio procedure, which spells any three-digit number accord-
ing to the above steps, is shown in Figure 39. The figure also includes a
flowchart (right) that highlights the steps that occur when the input num-
ber is 321; the active path is shown in red.

num > 99? SpellHundreds

trio =
num = 321

SpellTens

SpellTeen

SpellOnes

Example using
num = 321

num > 19 or
num = 10?

num = 21

num = 1

num > 10?

Figure 39: The SpellTrio procedure

The num variable specifies the three-digit number to be spelled. This
procedure constructs and saves the spelled number in the variable trio. To
make the procedure more readable, we created four blocks of our own that
implement the different execution paths. Some of these subprocedures
change the value num, as you’ll see next.

The four subprocedures called by SpellTrio are shown in Figure 40.
The procedures use a temporary variable (named d1) to hold the largest
digit of the input number and use that digit as an index to one of the three
word lists (digit, ten, or teen).

To explain how these scripts work, consider the flowchart of Figure 39.
Since num = 321 in this example, SpellTrio starts by calling SpellHundreds.
This procedure performs the following four steps (which correspond to the
four statements of the procedure):

1.	 Set d1 = 3, (the first digit of 321).

2.	 Set trio = “three” (the third item in the digits list).

3.	 Add a space followed by “hundred” to trio. So trio becomes “three
hundred”.

4.	 Set num = num – (d1 * 100) . Since d1 = 3, num becomes 21 (that is,
321 – 300).

Bonus Applications 27

Figure 40: The four subprocedures used by SpellTrio

When SpellHundreds returns, SpellTrio checks num again. Since 21 is
greater than 19, SpellTrio calls SpellTens. This procedure performs the fol-
lowing four steps:

1.	 Set d1 = 2, (the first digit of 21).

2.	 Set temp = “twenty” (the second item of the ten list).

3.	 To trio, add a space followed by the temp string. So, trio becomes “three
hundred twenty”.

4.	 Set num = num – (d1 * 10) . Since d1 = 2, num becomes 1 (that is,
21 – 20).

When SpellTens returns, SpellTrio checks num again. Since 1 is not
greater than 10, SpellTrio calls SpellOnes. Since num = 1, this procedure
sets temp = “one”, the first digit of the digit list, and appends this string to
trio, causing it to become “three hundred twenty one”.

Equipped with these procedures, all we have to do now is call the
SpellTrio procedure repeatedly for each element in the group list and
append the appropriate multiplier after spelling each group. Our
SpellNumber procedure is shown in Figure 41.

The procedure uses two variables: ans holds the words of the spelled-
out number, and index is used to cycle through the items of the group
list. The procedure first empties the ans string and initializes index to
point to the last entry of the group list u. It then starts a repeat loop to
cycle through all the items of the group list v. During each iteration of
the loop, the procedure sets the num variable to the three-digit number
currently being spelled and calls SpellTrio to spell out that number w.

28 Bonus Applications

When SpellTrio returns, we append its return value (which is saved in the
trio variable) to ans, followed by the appropriate multiplier word from the
multiplier list x. The index variable is also used to get the right entry from
the multiplier list.









Figure 41: The SpellNumber procedure

The main procedure that gets the user’s
input and drives the flow of the application is
shown in Figure 42. It starts by emptying the
group list of any entries added in a previous run.
It then prompts the user to enter a number and
waits for input. After getting the user’s input, it
calls BreakNumber to break the input number
into groups and save those groups into the
group list. It then calls SpellNumber, which
works on the entries of the group list to spell
out the input number.

The Sieve of Eratosthenes
Prime numbers have fascinated people since ancient times. The Sieve of
Eratosthenes procedure, which is illustrated in Figure 43, provides one way
to find all the prime numbers less than a given number. It works as follows:

1.	 Cross out number 1 because 1 is not a prime number.

2.	 Circle number 2 because 2 is prime.

3.	 Cross out all multiples of 2 (because they are not primes).

4.	 The next non-crossed-out number after 2 is 3. This number is thus a
prime, and we circle it.

5.	 Cross out all multiples of 3 (because they are not primes).

Figure 42: The main script
for the Say That Number
application

Sieve.sb2

Bonus Applications 29

6.	 The next non-crossed-out number after 3 is 5. This number is thus a
prime, and we circle it.

7.	 Cross out all multiples of 5 (because they are not primes).

8.	 Continue in this manner. The circled numbers at the end are prime
numbers.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...1 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...2 1

2 3 5 7 9 11 13 15 17 19 ...3 1 201816141210864

2 3 5 7 9 11 13 15 17 19 ...4 1 201816141210864

2 3 5 7 11 13 17 19 ...5 1 201816141210864 9 15

2 3 5 7 11 13 17 19 ...6 1 201816141210864 9 15

Figure 43: Using the sieve of Eratosthenes to find prime numbers

In this section, we’ll develop an application that demonstrates the sieve
of Eratosthenes. The interface for this application is shown in Figure 44.

Background

x-position

–204 204

–150

y-position

150

Figure 44: The Sieve of Eratosthenes that we’ll use in our script

A sprite will move over these numbers, crossing out the nonprime num-
bers as it goes along. At the end of the script, the remaining numbers will
be the prime numbers below 100.

The application contains one sprite (named Driver), which has two
costumes. The first costume (dot) is a small red circle that the sprite wears
when moving over the numbers. The second costume (blank) is a white rect-
angle that the sprite uses to wipe out nonprime numbers by stamping this
image over the nonprime numbers.

The application uses a list (numList) with 100 elements to keep track of
prime and nonprime numbers. The first element of the list corresponds to
1, the second element to 2, and so on. When the application ends, the value
stored in each element of the list will be either a 1 or a 0 to indicate whether
the corresponding number is a prime or not, respectively.

30 Bonus Applications

Let’s explore how our sieve works in Scratch in detail. When the green
flag icon is clicked, the Driver sprite runs the script shown in Figure 45.












Figure 45: The main script of the Driver sprite

The script clears the Stage (in case the sieve was run previously), com-
mands the sprite to wear its red dot costume, and moves the sprite to the
upper left cell (over the 1 in the sieve) u. The script then calls the Reset
procedure v, which initializes the 100 elements of numList to 1. After that,
it sets the variable num to 2 (since this is the first prime number) to prepare
for crossing out its multiples w, and it starts a repeat loop x to initiate the
process of crossing out the multiples of each discovered prime number.
Inside the loop, every time we find a list element whose value is 1 (meaning
that we’ve found a new prime number), we call CrossMultiples to cross out
the multiples of that prime y. When the loop terminates, the sprite returns
to the upper-left corner of the Stage z. The CrossMultiples procedure is
shown in Figure 46.

The CrossMultiples procedure uses a variable (named m) to hold the
multiples of the input number (num). The SetPosition procedure (shown
in Figure 47) moves the sprite to the correct location on the Stage as
specified by the current value of m u. The script starts a loop to examine
the numbers 2 × m, 3 × m, 4 × m, and so on, until the examined multiple
exceeds 100 v. If the list element corresponding to any of these multiples
has a value of 1, the sprite switches to its blank costume and stamps over
that number on the Stage to wipe it out w. It also sets the list value that cor-
responds to that multiple to 0.

Bonus Applications 31

Move the sprite to the
correct location on the
Stage as specified by the
current value of m.

Start a loop to examine the
numbers 2m, 3m, 4m,

If the list element corresponding
to the currently checked multiple
is 1, change it to 0. Also stamp
over that number to wipe it out.







Figure 46: The CrossMultiples procedure

These two variables
determine the row and
column numbers (from 1 to
10) that correspond to m.

Calculate the sprite’s position
on the Stage based on the
position of the first cell and
the spacing between the
cells.

A short wait lets you watch
the sprite’s movement.







Figure 47: The SetPosition procedure

32 Bonus Applications

The SetPosition procedure sets the sprite’s location in accordance
with the value stored in m. The two variables row and col are used to deter-
mine the row and column numbers (from 1 to 10) that correspond to m u.
Based on the position of the first cell (which contains 1) and the spacing
between the cells on the Stage, the procedure calculates the xPos and the
yPos of the sprite v. I’ve also included a short wait time w so you can watch
the sprite’s movement on the Stage.

Figure 48 shows the result of running this application. All nonprime
numbers have disappeared, and the remaining numbers are prime.

Figure 48: The output of the Sieve of
Eratosthenes application

	Chapter 2
	Chapter 6
	Guess My Number
	Rock, Paper, Scissors

	Chapter 7
	Match That Amount
	Planetary Motion
	Molecules in Motion

	Chapter 9
	Sort ’Em Out
	Say That Number
	The Sieve of Eratosthenes

